跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘育群
研究生(外文):Yu-Chun Pan
論文名稱:移動網路中合作模式的換手管理
論文名稱(外文):Cooperative Handoff Management for Mobile Networks
指導教授:孫雅麗孫雅麗引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:118
中文關鍵詞:合作模式無縫式漫遊無線網路認證計費使用者選擇服務模式垂直換手服務等級
外文關鍵詞:cooperativeroamingAAAuser-decidedservice modelvertical handoffservice level
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對現今許多的網路服務提供者來說,因為多種無線網路技術的發展,在移動漫遊的環境中同時提供WiMAX、HSDPA與Wi-Fi等異質無線存取技術,讓使用者可以依據當時使用環境與應用程式頻寬上的需要,選擇不同種類的無線網路連接網際網路,這一直是網路服務提供者的遠景。在本篇論文中,我們提出了在無線網路漫遊的情境中,設計了讓許多網路服務提供者在合作模式中(cooperative)同時可以達到快速安全認證的漫遊方法與一個由使用者自己依據成本與頻寬的考量,自行決定的服務等級的方法。在無線服務提供者之間所形成的合作模式下,這些不同的無線網路技術將被整合為一個完整的資源。
要達到上述的無線漫遊網路服務目標,有四個重要的議題要在本論文探討:1)行動使用者使用IP之定址方式,在無線網路中移動的同時,也需要使用漫遊服務,而不受限於其無線網路服務提供者的服務區域;2)在缺乏互信的情況下,使用者與每個無線網路服務提供者之間、以及每個無線網路服務提供者之間必須建立彼此互相信任的關係,其中包含了計費、認證機制與無線資源分享;3)在漫遊時因為認證機制或者無線網路訊息交換所增加的漫遊時間,必須加以縮短,因為時間延遲對如網路電話或者串流服務的品質影響甚鉅;4)在有多個不同網路技術服務選擇下,在成本與頻寬的考量之下,使用者如何選擇其需要的無線網路技術。
在本論文中,針對計費、認證機制我們設計了讓使用者攜帶的U-Mobile Token,此Token在合作模式下之不同無線網路服務提供者之間被認證,可以大幅縮短漫遊時因為認證、計費所造成的延遲。在此問題上我們也設計與實作【Fast and Secure Universal Roaming System】縮寫為FAS-URS (唸作Fas(t) Earth)系統,此系統證實了漫遊者在不同的無線網路服務提供者之間可以享受快速且不中斷的通訊服務。
在使用者的服務品質的議題上,目前無線網路服務提供者普遍使用單一定價(Flat-rate),雖然使用者可以無限制使用網路資源,但是實際上卻無法保證網路服務品質 (Quality of Service),我們也在異質無線服務業者的合作模式(例如WiMAX與 HSDPA)的環境下,提供使用者多個選項,使用者可以依據其所付出的成本與需要的服務等級,選擇最適合的無線網路服務。在我們的模擬中,其結果顯示,此架構同時提高了使用者的滿意度,也讓無線網路系統可以容納更多的使用者,創造更高的利益。在本論文中,我們延伸此服務模式至垂直換手服務,在垂直換手的情境中,除了可以達到無縫式換手之外,我們仍可保證其在原網路中之服務等級。
Employing multiple radio access technologies such as WiMAX, HSDPA and Wi-Fi in a mobile network to provide users with more cost-effective communication services has long been a vision of many service network providers. In this thesis, we propose a security roaming solution in handover scenario and provide a novel user-decided service model in a cooperative wireless network environment and in the last, we based on user-decided service model, proposed a QoS guaranteed solution in vertical handoff scenario. When the radio resources of multiple wireless networks are collectively managed, four issues are raised in such a communication environment: a) service users would like to have IP-based roaming capability as they move rather than being constrained to a single spot or being forced to disconnect because his/her service provider does not have entire coverage of the city/region; b) the need on security and accounting management for mobile Internet; and c) the execution of AAA however would incur extra delay to handoff latency. For applications like VoIP, video streaming and TCP connections, it may disrupt the on-going communications if such latency becomes too large. d) within these versatile reless technologies, how can mobile users choose the suitable wireless network to move in. In this work, we propose an AAA-enabled roaming alliance architecture that provides fast and secure universal roaming service across multiple service domains. The associated protocols and the supporting security mechanisms are also proposed. Our design provides continuing communications service to mobile user belonging to different service operators to quickly and securely access service when roaming across multiple service domains. Mobile users only need to carry a U-Mobile Token to receive the service. The schemes proposed only incur minimal latency in security check. This is particularly important to the support of real-time mobile applications.
For the novel user-decided service model which provided with multiple service options with different levels of service quality and charges. It is up to users to choose the most suitable service option (and access network) based on their personal preference and the amount of money they are willing to pay. We use a video streaming service in a WiMAX/HSDPA network as an example to illustrate the key concepts and resource management of our approach. The results of simulation show that, under the model, the service network can accommodate more users and provide higher user satisfaction than the traditional network-decided service model. It can also achieve higher resource utilization and revenues. We also extend this service model to vertical handoff service, besides providing seamless handoff, also keep the QoS service level as in the original network.
Table of Contents
Table of Contents I
List of Figures III
List of Tables IV
中文摘要 1
Abstract 3
1 Introduction 1
1.1. Problem Statement and Motivation 3
1.2. Scope and Methodology 6
1.3. Contribution of This Thesis 7
1.4. Outline of The Thesis 8
2. Overview of Handoff Management and Related Works 10
2.1. Location Management 13
2.2. Horizontal handoff: Micro Mobility 14
2.2.1. Cellular IP 16
2.2.2. HAWAII 17
2.2.3. Hierarchical Mobile IP 18
2.3. Vertical Handoff 20
2.3.1. 3GPP Interworking Architecture 20
2.3.2. IEEE 802.21 22
2.4. Related works 24
2.4.1. Security Control : Mobile IP and AAA 24
2.4.2. QoS Control and Handoff Control : User Decided Model 28
2.4.3. Seamless Vertical Handoff 30
3. Cooperative Universal Secure Handoff Service 32
3.1. Problem Definition 33
3.2. Forming an AAA-enabled Roaming Alliance 40
3.2.1. Join 41
3.2.2. Leave 42
3.3. U-Mobile Token 42
3.3.1. Design Goal 44
3.3.2. Alliance Key Pair 45
3.3.3. Alliance Service Key 46
3.3.4. Content Design 47
3.4. Fast Roaming Authentication 49
3.4.1. Service Data Record(SDR) 51
3.4.2. Universal Roaming Service Management 52
3.4.3. Distribution of Alliance Private Key to Mobile Nodes 53
3.5. System Implementation and Performance Evaluation 56
3.5.1. System Implementation 56
3.5.2. Security Analysis 59
3.6. Summary of This Work 60
4. Cooperative User-decided Service Model 62
4.1. Problem Definition 63
4.2. Application Service: Video Streaming 65
4.3. Network Resource-Application View 67
4.3.1. WiMAX Resource Management: OFDMA Symbol Scheduling 68
4.3.2. Resource Management in HSDPA 70
4.4. The User–Decided Service Model 73
4.4.1. Service Charge 74
4.4.2. User Satisfaction 74
4.4.3. Scheduling with WF2Q-M 77
4.5. Performance Evaluation 78
4.5.1. Number of Users 79
4.5.2. User Satisfaction 81
4.5.3. Service Revenue 81
4.6. Summary of This Work 82
5. Vertical Handoff in WiMAX/HSDPA Interworking Network 84
5.1. Problem Definition 84
5.2. WiMAX/HSDPA Interworking Architecture 85
5.3. Vertical Handoff Manager 88
5.3.1. From HSDPA to WiMAX 89
5.3.2. From WiMAX to HSDPA 91
5.4. Performance Evaluation 92
5.5. Summary of This Work 98
6. Conclusions and Future Work 100
References 105
Appendix: Handoff Message Description 110
References
[1] IAN F. A., Janise M., Joseph S. M. Ho., Huseyin U., Wenye W.,” Mobility Management in Next-Generation Wireless System,” Proc. IEEE, Vol. 87, Aug. 1999.
[2] C. Perkins, “IP Mobility Support,” RFC 2002, 1996.
[3] Campbell AT. Gomez J, Sanghvo Kim, Chieh-Yih Wan, Turanyi ZR and Valko AG, “Comparison of IP micromobility protocols,” IEEE Wireless Communications 1: 72-82, 2002.
[4] R. Ramjee, K. Varadhan, L. Salgarelli, S. Thuel, S. Wang, and T. L.Porta, “HAWAII: a domain-based approach for supporting mobility in wide-area wireless networks,” IEEE/ACM Trans. on Networking, 2002.
[5] 3GPP TS23.234 version 7.7.0 Release 7: “Universal Mobile Telecommunications System (UMSS); 3GPP system to Wireless Local Area Network (WLAN) interworking; System description,” Technical Specification, 2008-06.
[6] IEEE 802.21/D14 Draft Standard, “Media Indepent Handover Service,” Sep. 2008.
[7] IEEE Std 802.11i/D4.1, “Wireless Medium Access Control(MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Security Enhancements,” July 2003.
[8] http://www.ipass.com.
[9] Valko, A. Campbell, and J. Comez., “Cellular IP”. Draft-valko-cellularip-00.txt, Nov. 1998.
[10] Charles E. Perkins and Kuang-Yeh Wang. “Optimized Smooth Handoffs in Mobile IP,” Proceedings of the Fourth IEEE Symposium on Computers and Communications, July 1999.
[11] J. Vollbrecht, etc. , “AAA Authorization Framework,” RFC 2904, 2000.
[12] J Vollbrecht, etc. , “AAA Authorization Application Example,” RFC 2905, 2000.
[13] Ted Takeyoung Kwon, Mario Gerla. “An IP-level Mobility Management Based on Quasi-Registration in Wireless Technologies Convergence,” World Wireless Congress 2002.
[14] Torsten Braun, Li Ru ,Funther Stattenberger, “An AAA Architecture Extension for Providing Differentiated Services to Mobile IP Users,” ISCC 2001.
[15] Internet Key Exchange, RFC 2409, 1998.
[16] IP Encapsulated Security Payload (ESP), RFC 2406, 1998.
[17] IP Authentication Header (AH), RFC 2402, 1998.
[18] Y. Richard Yang, X. Steve Li, X. Brian Zhang and Simon S. Lam, “Reliable Group Rekeying: A Performance Analysis,” ACM SIGCOMM, pp. 27-38, 2001.
[19] Yan Sun and K.J. Ray Liu, “Scalable Hierarchical Access Control in Secure Group Communications,” IEEE INFOCOM 2004.
[20] Thomas J. Kostas, et al,” Real-Time Voice Over Packet-Switched Networks,” IEEE Network Magazine Jan/Feb 1998.
[21] B. Aboba, J. Wood.,”Authentication, Authorization and Accounting (AAA) Transport Profile.” RFC3539, 2003.
[22] W. Diffie and M.E. Hellman, “New directions in cryptography,” IEEE Transactions on Information Theory 22 (1976),” 644-654.
[23] C. W. Lee, L.M. Chen, M. C. Chen and Y. S. Sun, “A Framework of Handoffs in Wireless Overlay Networks Based on Mobile IPv6,” IEEE Journal on Selected Areas in Communications, Volume 23, No. 11, November 2005, Pages pp.2118-2128.
[24] USAGI Project, Linux IPv6 Development Project, http://www.linux-ipv6.org
[25] A. Hess and G. Shafer,”Performance Evaluation of AAA/Mobile IP authentication,” Technical Report TKN-01-012, Univ. Berlin, Aug. 2001.
[26] S. K. Miller, “Facing the Challenges of Wireless Security,” IEEE Computer,
pp. 46–48, July 2001.
[27] W.A. Arbaugh, “Wireless security is different,” IEEE Computer, pp.99-101,2 Aug. 2003.
[28] H. J. Wang, R.H. Katz, and J. Giese, “Policy-Enabled Handoffs across Heterogeneous Wireless Networks,” Proc. IEEE Workshop, Mobile Computation Systems and Applications, February 1999.
[29] Mani, N. Crespi, “Handover Criteria Considerations in Future Convergent Networks,” IEEE Globecom 2006.
[30] A. Hasib, A.O. Fapojuwo, “Joint Radio Resource Management over Very Tightly Coupled Heterogeneous Networks for Multimode Reconfigurable Terminals,” IEEE VTC 2006.
[31] S. Horrich, S. E. Elayoubi and S. B. Jemaa, “A game-theoretic model for radio resource management in a cooperative WIMAX/HSDPA network,” IEEE ICC 2008.
[32] P. Mahonen, M. Petrova, J. Riihijarvi, and M. Wllens, “Cognitive Wireless Networks: Your Network Just Became a Teenager,” IEEE INFOCOM Poster 2006.
[33] “Information technology — Coding of audio-visual objects H.264/AVC”, International Standard ISO/IEC 14496-10, 2004.
[34] IEEE. 802.16e-2005: Air Interface for Fixed and Mobile Broadband Wireless Access Systems – Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands. Standard, February 28, 2006.
[35] 3GPP TS 25.213 “Spreading and modulation (FDD) (R7),” November, 2007.
[36] http://www.ntt-east.co.jp/product_e/05/2.html, NTT EAST Monthly Charge of ADSL.
[37] http://www.cht.com.tw, Chunghwa Telecom Monthly Charge of ADSL.
[38] N. P. Melone, “A Theoretical Assessment of the User-Satisfaction Construct in Information Systems Research Management Science,” Management Science, Vol. 36, No. 1, pp. 76-91, January, 1990.
[39] W. R. Scott,” Organizational Effectiveness,” in Organizations: Rational, Natural, and Open (2nd edition), Prentice-Hall, Englewood Cliffs, NJ, 1987.
[40] L. T. Su, “The relevance of recall and precision in user evaluation,” Journal of the American Society for Information Science and Technology, Volume 45, Jan, 1999, pp. 207 – 217.
[41] Z. Jiang, H. Mason., J. Kim., N. K. Shankaranarayanan and P. Henry. "A Subjective Survey of User Experience for Data Application in Future Cellular Wireless Networks," Proceedings of SAINT. 2001.
[42] N Enderlé, X. Lagrange, “User Satisfaction Models and scheduling algorithms for packet-switched services in UMSS,” IEEE VTC 2003.
[43] YK Ng, “A Case for Happiness, Cardinalism, and Interpersonal Comparability,” Vol. 107, NO 445, 1997, pp. 1848-1858.
[44] J. F. Lee, M. C. Chen and Y. S. Sun, "WF2Q-M: Worst-case Fair Weighted Fair Queueing with Maximum Rate Control," Computer Networks, Vol. 51, pp. 1403-1420, 2007.
[45] Mark Stemm and Randy H. Katz, “Vertical handoffs in wireless overlay networks,” Mobile Networks and Applications, ACM MONET, Summer 19.
[46] V. Varma, S. Ramesh, K.D. Wong, M. Barton, G. Hayward and J. Friedhoffer. “Mobility Management in Integrated UMSS/WLAN Networks,” IEEE ICC 2003.
[47] Hyun-Ho Choi, Song, O.; Dong-Ho Cho; ”A seamless handoff scheme for UMSS/WLAN interworking,” IEEE Globecom 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊