跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 07:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉瑞桐
研究生(外文):Jui-Tung Liu
論文名稱:CaenorhabditiselegansASNA-1基因對於砷抗性的調控與其功能的探討
論文名稱(外文):Characterization of ASNA-1 with Arsenic in Caenorhabditis elegans
指導教授:廖秀娟廖秀娟引用關係
指導教授(外文):Vivian Hsiu-Chuan Liao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:61
中文關鍵詞:ASNA-1ABTS-1Caenorhabditis elegansRNAi解毒傳輸蛋白
外文關鍵詞:ArsenicCaenorhabditis elegansASNA-1ABTS-1RNAidetoxificationtransporter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
砷是一種自然存在的毒性物質,當暴露於砷環境的情況下會造成各種器官的病變,目前被認定為已知的人類致癌物。不論是在真核生物或原核生物,各個生物系統中都可以發現對於砷的毒性解毒機制。在Caenorhabditis elegans (C. elegans) 中,已經找到了在細菌中扮演砷解毒機制基因ArsA的同源基因asna-1。然而目前與asna-1交互作用並扮演排除三價砷的傳輸蛋白仍然未被找出。因此,本研究運用了生物資訊的方法預測出了多個可能與asna-1交互作用的基因,並且利用RNA interference (RNAi)的方法進一步篩選出此傳輸蛋白。同時,本研究也繼續探討了asna-1在C. elegans中的於砷存在時的調控機制。
本研究利用RNAi 篩選方法,找出了陰離子傳輸蛋白ABTS-1可能為排出砷的傳輸蛋白。我們更進一步地利用將abts-1基因移除的突變線蟲做砷的毒性測試,研究結果顯示了abts-1 缺失的線蟲對於砷的抗性有明顯的降低,證實了ABTS-1對於砷的傳輸扮演了重要的角色。研究結果亦顯示, asna-1缺失的線蟲對砷的抗性有明顯的降低。另一方面,大量表達ASNA-1蛋白質的C. elegans則可以增加對砷的抗性,更進一步證實了ASNA-1為C. elegans抗砷機制的重要蛋白。除此之外,我們也利用transgenic C. elegans以及 Real-time RT-PCR的方法對於asna-1於不同幼蟲時期的基因表達以及其暴露於砷情況下的基因調控作進一步的瞭解。我們發現了在L1幼蟲時期以及成蟲時期asna-1對於砷的誘導情況最為明顯。同時本研究也探討了asna-1以及abts-1對於C. elegans壽命的影響。結果顯示了缺乏abts-1的功能會導致C. elegans壽命的延長。
由本研究結果可推測出基因abts-1所轉譯的ABTS-1在對於細胞體內砷的排出扮演了重要角色並且可能為與ASNA-1作用的傳輸蛋白。同時也可推斷ASNA-1於C. elegans的幼蟲時期以及成蟲時期扮演重要的角色。
Arsenic is a known human carcinogen and a potent toxin. It is a major environmental pollutant. Nearly in every organism, from prokaryotes to eukaryotes, have mechanisms for arsenic detoxification. In Caenorhabditis elegans, the gene asna-1 has been identified as the homolog of ArsA in Escherichia coli (E. coli) and involved in arsenic detoxification. To identify genes interacting with asna-1, the candidate genes were identified by gene interaction predicted program. RNA interference (RNAi) analysis was performed to screen for asna-1 interacted gene in the presence of As(III) and we found the anion transporter ABTS-1. Toxicity tests showed that both asna-1 mutant and abts-1 mutant were hypersensitive to As(III), indicating that both asna-1 and abts-1 are required for As(III) detoxification. ASNA-1 developmental mRNA expression induced by As(III) in vivo and in vitro were examined by transgenic C. elegans and real-time RT-PCR analysis, respectively. The results showed that ASNA-1 mRNA expression varied in different developmental stages of worms and adulthood had higher expression level. In addition, ASNA-1 mRNA expression was induced by As(III). Life span assay showed overexpression of ASNA-1 protein did not affect the longevity of nematodes but the deletion of abts-1 extended the life span of C. elegans. In this study, our results showed that ASNA-1 was involved in As(III) resistance and ABTS-1 might act as the corresponding transporter to As(III) detoxification. ABTS-1 might be involved in insulin-like signaling (IIS) pathway because of the extension of life span in abts-1 mutant.
TABLE OF CONTENTS
誌謝.................... .........................I
中文摘要...............................................III
ABSTRACT................................................V
TABLE OF CONTENTS................................VII
LIST OF TABLES....................................IX
LIST OF FIGURES...........................................X
LIST OF APPENDIX.........................................XI
ABBREVIATIONS...........................................XII
CHAPTER 1 INTRODUCTION..........................................1
1.1 Arsenic (As)....................................1
1.2 Detoxification system of arsenic in organisms........3
1.2.1 Bacteria....................................3
1.2.2 Saccharomyces cerevisiae.......................................4
1.2.3 Mammalian systems............................6
1.2.4 Caenorhabditis elegans (C. elegans)...........7
1.3 C. elegans as an animal model to explore toxicology...8
1.4 ArsA in organisms.............................11
1.4.1 ArsA in Prokaryotes..........................12
1.4.2 ArsA in Eukaryotes.................................12
1.5 Purpose of study.............................15
Chapter 2 MATERIALS AND METHODS.........................17
2.1 Chemicals................................................17
2.2 Strains, clone, and culture condition...............17
2.3 Culture and isolation of C. elegans exposed to As(III)................................................18
2.4 RNA Interference ( RNAi )..........................18
2.5 Toxicity analysis....................................19
2.6 Real-time RT-PCR....................................20
2.7 Expression of transgenic C. elegans................22
2.8 Arsenic exposure assay.........................22
2.9 Life span assay................................23
2.10 Statistical analysis................................25
CHAPTER 3 RESULTS..................................................26
3.1 Prediction of asna-1 interacted genes...........26
3.2 Identification of asna-1 interacted genes via RNA interference analysis............................27
3.2.1 asna-1 (RNAi)............................27
3.2.2 Screening of asna-1 interacted genes by RNA interference...30
3.3 Lethality tests of metalloids for C. elegans.........31
3.3.1 Effect of As(III) and Sb(III) on asna-1........31
3.3.2 Effect of As(III), Sb(III), and other heavy metals on abts-1...36
3.4 Life span assay.................................37
3.5 Expression of transgenic C. elegans..................41
3.6 Analysis of ASNA-1 mRNA expression level affected by As(III).......43
Chapter 4 DISCUSSION AND CONLUSION.....................49
4.1 Characterization of asna-1 in C. elegans.............49
4.2 ASNA-1 mRNA expression affected by As(III) exposure..50
4.3 Identification of ASNA-1 interacted genes.........52
4.4 Regulation of asna-1 and abts-1.................54
References ......55
References
C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282(5396): 2012-2018
Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133(5 Suppl 1): 1536S-1538S
Apfeld J, Kenyon C (1998) Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95(2): 199-210
Beane Freeman LE, Dennis LK, Lynch CF, Thorne PS, Just CL (2004) Toenail arsenic content and cutaneous melanoma in Iowa. Am J Epidemiol 160(7): 679-687
Bhattacharjee H, Rosen BP (2001) Structure-function analysis of the ArsA ATPase: contribution of histidine residues. J Bioenerg Biomembr 33(6): 459-468
Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, Ulaszewski S (1997) Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13(9): 819-828
Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1): 71-94
Broeks A, Gerrard B, Allikmets R, Dean M, Plasterk RH (1996) Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. EMBO J 15(22): 6132-6143
Chen CM, Misra TK, Silver S, Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 261(32): 15030-15038
Cole SP, Sparks KE, Fraser K, Loe DW, Grant CE, Wilson GM, Deeley RG (1994) Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 54(22): 5902-5910
Coulson A, Sulston J, Brenner S, Karn J (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 83(20): 7821-7825

Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9(6): 869-877
Dey S, Rosen BP (1995) Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol 177(2): 385-389
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669): 806-811
Flora SJ, Bhadauria S, Kannan GM, Singh N (2007) Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28(2 Suppl): 333-347
Golub MS, Macintosh MS, Baumrind N (1998) Developmental and reproductive toxicity of inorganic arsenic: animal studies and human concerns. J Toxicol Environ Health B Crit Rev 1(3): 199-241
Hemmingsson O, Zhang Y, Still M, Naredi P (2008) ASNA1, an ATPase targeting tail-anchored proteins, regulates melanoma cell growth and sensitivity to cisplatin and arsenite. Cancer Chemother Pharmacol
Hsu CM, Rosen BP (1989) Characterization of the catalytic subunit of an anion pump. J Biol Chem 264(29): 17349-17354
Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19(19): 2278-2283
Kao G, Nordenson C, Still M, Ronnlund A, Tuck S, Naredi P (2007) ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell 128(3): 577-587
Kaur P, Rosen BP (1993) Complementation between nucleotide binding domains in an anion-translocating ATPase. J Bacteriol 175(2): 351-357
Kenyon C (1988) The nematode Caenorhabditis elegans. Science 240(4858): 1448-1453

Kurdi-Haidar B, Heath D, Aebi S, Howell SB (1998) Biochemical characterization of the human arsenite-stimulated ATPase (hASNA-I). J Biol Chem 273(35): 22173-22176
Li J, Rosen BP (2000) The linker peptide of the ArsA ATPase. Mol Microbiol 35(2): 361-367
Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303(5657): 540-543
Lin YF, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci U S A 103(42): 15617-15622
Link EM, Hardiman G, Sluder AE, Johnson CD, Liu LX (2000) Therapeutic target discovery using Caenorhabditis elegans. Pharmacogenomics 1(2): 203-217
Metz J, Wachter A, Schmidt B, Bujnicki JM, Schwappach B (2006) The yeast Arr4p ATPase binds the chloride transporter Gef1p when copper is available in the cytosol. J Biol Chem 281(1): 410-417
Nass R, Blakely RD (2003) The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration. Annu Rev Pharmacol Toxicol 43: 521-544
Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389(6654): 994-999
Rand JB, Johnson CD (1995) Genetic pharmacology: interactions between drugs and gene products in Caenorhabditis elegans. Methods Cell Biol 48: 187-204

Riddle DL (2003) Neurobiology of aging: hormonal regulation of development and longevity in C. elegans. Alzheimer Dis Assoc Disord 17 Suppl 2: S42-44
Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529(1): 86-92
Rosen BP, Weigel U, Monticello RA, Edwards BP (1991) Molecular analysis of an anion pump: purification of the ArsC protein. Arch Biochem Biophys 284(2): 381-385
Ruan X, Bhattacharjee H, Rosen BP (2006) Cys-113 and Cys-422 form a high affinity metalloid binding site in the ArsA ATPase. J Biol Chem 281(15): 9925-9934
Shen J, Hsu CM, Kang BK, Rosen BP, Bhattacharjee H (2003) The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 16(3): 369-378
Sherman T, Chernova MN, Clark JS, Jiang L, Alper SL, Nehrke K (2005) The abts and sulp families of anion transporters from Caenorhabditis elegans. Am J Physiol Cell Physiol 289(2): C341-351
Singh N, Kumar D, Sahu AP (2007) Arsenic in the environment: effects on human health and possible prevention. J Environ Biol 28(2 Suppl): 359-365
Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1): 113-130
Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74(6): 289-299
Takemaru K, Mizuno M, Sato T, Takeuchi M, Kobayashi Y (1995) Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. Microbiology 141 ( Pt 2): 323-327
Tseng YY, Yu CW, Liao VH (2007) Caenorhabditis elegans expresses a functional ArsA. FEBS J 274(10): 2566-2572
Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity--a review. Hum Exp Toxicol 26(10): 823-832

Vahter M, Concha G (2001) Role of metabolism in arsenic toxicity. Pharmacol Toxicol 89(1): 1-5
Vatamaniuk OK, Bucher EA, Sundaram MV, Rea PA (2005) CeHMT-1, a putative phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 280(25): 23684-23690
Wang A, Holladay SD, Wolf DC, Ahmed SA, Robertson JL (2006) Reproductive and developmental toxicity of arsenic in rodents: a review. Int J Toxicol 25(5): 319-331
Wicks SR, Yeh RT, Gish WR, Waterston RH, Plasterk RH (2001) Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat Genet 28(2): 160-164
Williams PL, Dusenbery DB (1990) A promising indicator of neurobehavioral toxicity using the nematode Caenorhabditis elegans and computer tracking. Toxicol Ind Health 6(3-4): 425-440
Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268(1): 52-58
Wu J, Tisa LS, Rosen BP (1992) Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J Biol Chem 267(18): 12570-12576
Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272(48): 30061-30066
Xu C, Zhou T, Kuroda M, Rosen BP (1998) Metalloid resistance mechanisms in prokaryotes. J Biochem 123(1): 16-23
Zhong W, Sternberg PW (2006) Genome-wide prediction of C. elegans genetic interactions. Science 311(5766): 1481-1484
Zhou T, Rosen BP (1997) Tryptophan fluorescence reports nucleotide-induced conformational changes in a domain of the ArsA ATPase. J Biol Chem 272(32): 19731-19737

Zhou T, Rosen BP (1999) Asp45 is an Mg2+ ligand in the ArsA ATPase. J Biol Chem 274(20): 13854-13858
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top