跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊民宇
研究生(外文):Min-Yu Yang
論文名稱:水稻PDR類ABC轉運蛋白分子特性分析及其對重金屬鎘、銅及鋅之反應
論文名稱(外文):Molecular Characterization of Rice PDR-type ABC Transporters and Their Responses to Cadmium, Copper, and Zinc
指導教授:洪傳揚
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:水稻ABC 轉運蛋白重金PDR啟動子分析
外文關鍵詞:riceABC transporterheavy metalPDRpromoter analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬離子是植物體內生化反應進行時重要的因子之一,植物藉由許多金屬蛋白進行許多重要的生理活動,但是金屬被吸收後,要通過膜系必須藉由許多轉運蛋白的輔助,其中ABC(ATP-Binding Cassette Transporters)轉運蛋白也參與其中。ABC轉運蛋白中,已知有些PDR(pleiotropic drug resistance)類的ABC轉運蛋白和金屬進出膜系相關,但水稻的資訊相當少,本研究透過研究水稻PDR類ABC轉運蛋白之分子特性及對於鎘、銅及鋅的反應,對水稻PDR 基因家族基因表現與鎘、銅及鋅和金屬吸收的關係進行初步探討。試驗中以耐重金屬的台農六十七號水稻(TNG67)及不耐重金屬的台中在來一號(TN1)為材料,先測定在鎘、銅及鋅處理下,水稻的重金屬吸收量,並利用即時定量聚合酶連鎖反應分析水稻PDR基因家族二十個基因的組織專一性,及對鎘、銅及鋅這三種重金屬的反應。鎘、銅及鋅處理四十八小時後,TN1的第二葉較TNG67有明顯萎凋現象,TN1地上部中鎘、銅及鋅累積量較TNG67高,TNG67根部鎘、鋅含量則高於TN1,TN1根部銅含量則
高於TNG67。以TNG67為材料的組織專一性分析結果顯示,幼苗時期OsABCG35、OsABCG41及OsABCG48在根部的表現量較高,OsABCG40、OsABCG44及OsABCG50則在地上部有較高的表現;在生殖生長期中,OsABCG36、OsABCG43、OsABCG48在葉鞘的表現量很高,OsABCG31、OsABCG33、OsABCG34、OsABCG38、OsABCG46、OsABCG47、OsABCG49、OsABCG50則在幼花序中有較高的表現;在乳熟期或糊熟期種子中,則有OsABCG31、OsABCG33、OsABCG45、OsABCG46及OsABCG47等五個基因表現量較高。在重金屬誘導性方面,OsABCG34、OsABCG35、OsABCG36、OsABCG37、OsABCG39、OsABCG43、OsABCG44及OsABCG48等八個基因會同時在TNG67及TN1根部受到鎘、銅及鋅的誘導,其中OsABCG36的誘導性高達500倍;OsABCG33、OsABCG40、OsABCG46及OsABCG47等四個基因在TNG67的根部只受銅誘導,OsABCG49只在TN1根部受鎘誘導;另外,OsABCG42在TNG67根部的基因表現會受到銅的抑制。在地上部方面,OsABCG35、OsABCG36、OsABCG41、OsABCG43、OsABCG47及OsABCG48等六個基因在TNG67同時受到鎘、銅及鋅的誘導,其中OsABCG36受到銅誘導6倍表現量,TN1的OsABCG48會受到高濃度銅及鋅的誘導。OsABCG33、OsABCG34、OsABCG42、OsABCG49及OsABCG50則是在兩個品種的地上部皆表現較微弱或受抑制。將受銅誘導表現的水稻PDR基因啟動子序列進行序列相似性比對,結果發現一個可能是與銅反應相關的新型保守性區域GACAAC。為了釐清重金屬對PDR基因的調控,我們選擇受重金屬高度誘導的OsABCG36,進行進一步的功能分析,半定量反轉錄聚合酶連鎖反應結果顯示,除
了重金屬外,OsABCG36在根部亦受鹽分及PEG誘導,但不受缺水誘導。將轉殖水稻OsABCG36轉譯起始點上游2Kb的啟動子片段,接上GUS報導基因,GUS染色結果顯示此基因會在葉身(Blade)、幼花序的花藥及維管束組織中表現,葉鞘則是在切口處出現GUS訊號;在幼苗時期,OsABCG36在不完全葉及側根中表現,但銅處理後,GUS則累積在在主根。生物資訊分析結果顯示OsABCG36屬膜蛋白,GFP-OsABCG36融合蛋白的次細胞定位分析,結果發現於細胞膜及細胞核皆有此
蛋白的存在。為了解OsABCG36之功能,試驗中將OsABCG36基因大量表現在水稻中,並利用RNA干擾技術產生OsABCG36基因靜默的轉殖水稻;目前共得到28個不同的大量表現OsABCG36轉殖癒傷組織,並已獲得15個不同轉殖系的幼苗,利用RNA 干擾技術獲得的基因靜默轉殖株,目前已有種植七株於溫室,待獲得種子後,將進行功能分析。總的來說,此金屬吸收及基因表現差異的相關先導性研究,為探討PDR 類ABC 轉運蛋白的功能提供相當豐富的資訊,有助於未來的功能探討。
Metal ion is one of the important factors that involved in many biochemical processes in plants. A lot of plant physiological responses are modulated by metalloproteins. In
plants, metals are uptaken by many kinds of transporters. The PDR-type ABC transporters (ATP-binding Cassette transporter) have been known to be involved in metal transport in Arabidopsis. However, the function of the PDR-type ABC transporters of rice is largely unknown. In this pilot study, we use a heavy metal tolerant rice cultivar TNG67 and a heavy metal sensitive rice cultivar TN1 as plant materials. After two days treatment with Cd, Cu, and Zn, the second leaf of TN1 showed severe yellowing phenotype. In contrast, no obvious changes could be observed in TNG67. Metal uptake analysis shown that TN1 accumulates higher Cd, Cu, and Zn than TNG67 in shoot tissues. However, except Cu, TNG67 accumulates higher Cd and Zn than TN1 root tissues. The tissue specific gene expression analysis in two-week-old seedlings indicated that OsABCG35, OsABCG41, and OsABCG48 are highly expressed in root tissue, while OsABCG40, OsABCG44 and OsABCG50 are highly expressed in shoot tissue. In the reproductive stage, OsABCG36, OsABCG43, and OsABCG48 are highly
expressed in the sheath tissue, while OsABCG31, OsABCG33, OsABCG34, OsABCG38, OsABCG46, OsABCG47, OsABCG49 and OsABCG50 are expressed in the young spikes. Furthermore, OsABCG31, OsABCG33, OsABCG45, OsABCG46 and OsABCG47 are highly expressed in the immature seeds. Analysis of the transcriptional profiles of twenty rice PDR-type ABC transporter gene family and their response to Cd, Cu, and Zn by quantitative real-time PCR showed that eight genes including OsABCG34, OsABCG35, OsABCG36, OsABCG37, OsABCG39, OsABCG43, OsABCG44, and OsABCG48, could be induced by Cd, Cu, and Zn either in TNG67 or in TN1. Among these genes, The OsABCG36 gene was dramatically induced five hundred folds in root tissues upon Cd treatment. The OsABCG33, OsABCG40,OsABCG46 and OsABCG47 are solely induced by copper in roots of TNG67, while the OsABCG49 is solely induced by cadmium in roots of TN1. In addition, the OsABCG42 is repressed by copper in roots of TNG67, and the OsABCG45 is repressed by cadmium or zinc in both cultivars. In shoot tissues of TNG67, six genes were induced by Cd, Cu, and Zn including the OsABCG35, OsABCG36, OsABCG41, OsABCG43, OsABCG47, and OsABCG48. But it seems that few genes could be induced by metals in TN1, except the OsABCG48. To dissect the molecular mechanisms underlying the heavy metal
induced PDR-type ABC transporter gene expression , the promoter sequence of Cd, Cu, and Zn induced genes were analyzed. We found a novel putative copper response
element ”GACAAC” presented at the promoter region of these genes. Since the OsABCG36 is highly induced by heavy metals, we chose this gene for functional study related to heavy metals. The results shown that the OsABCG36 is not only induced by heavy metals, but is also induced by salt and PEG. To study the promoter activity, 2Kb promoter of OsABCG36 was isolated and fused with GUS reporter gene. The GUS protein of POsABCG36/GUS transgenic rice was mainly accumulated in blade and anthers of immature flower. The GUS signal could also be detected in coleoptile, incomplete
leaves, and lateral roots of rice seedlings. Upon copper treatment, GUS signals moved from lateral roots to main roots and showed more strong signal in root tissues.
Subcellular localization assay demonstrated that GFP-OsABCG36 fusion protein not only located at the plasma membrane, but also located at nucleus. In order to explore the function of the OsABCG36, OsABCG36-OE and OsABCG36-RNAi transgenic rice plants were generated. Totally, 28 putative OsABCG36-OE transformed calli were obtained, and 15 putative transgenic rice were regenerated so far. For the
OsABCG36-RNAi plants, 7 transgenic rice plants were obtained. Taken together, our pilot study on the differential metal uptake ability and the gene expression patterns to heavy metal in two rice cultivars offer a lot of information for functional studies on PDR-type ABC transporters in the future.
誌謝..........................................II
中文摘要......................................VII
英文摘要......................................IX
縮寫字對照表..................................XII
壹、緒論
一、植物體中重金屬的吸收、轉運與恆定..........1
二、ABC 轉運蛋白的發現........................3
三、ABC 轉運蛋白的基本特性....................4
四、ABC 轉運蛋白的分類與命名..................6
五、植物的ABC 轉運蛋白........................8
六、植物ABC 轉運蛋白的功能....................10
貳、研究目的..................................18
參、材料與方法
一、質粒的構築................................19
二、水稻基因轉殖..............................24
三、基因表現分析材料準備與處理................26
四、基因表現分析..............................30
五、啟動子特性分析............................33
六、蛋白質次細胞位置分析......................33
肆、實驗結果
一、水稻PDR 次基因家族分子特性分析............35
二、水稻在鎘、銅及鋅處理下外表型的變化以及重金屬含量的變化
..........................................37
三、水稻PDR 基因家族在鎘、銅及鋅處理下的基因表現分析
..........................................38
四、OsABCG36 基因受非生物性逆境的誘導性.......40
五、OsABCG36 啟動子特性分析...................41
六、OsABCG36 次細胞定位分析...................42
七、OsABCG36 基因靜默轉殖水稻的建立...........42
八、OsABCG36 大量表現轉殖水稻的建立...........42
伍、討論......................................43
陸、參考文獻..................................53
圖............................................67
表............................................103
附表..........................................111
戶刈義次 (1963) 作物學試驗法. 東京農業技術學會印行 第159-176 頁
Ames, G.F. (1986). Bacterial periplasmic transport systems: structure, mechanism, and
evolution. Annual review of biochemistry 55, 397-425.
Badri, D.V., Loyola-Vargas, V.M., Du, J., Stermitz, F.R., Broeckling, C.D.,
Iglesias-Andreu, L., and Vivanco, J.M. (2008). Transcriptome analysis of
Arabidopsis roots treated with signaling compounds: a focus on signal
transduction, metabolic regulation and secretion. The New phytologist 179,
209-223.
Becher, M., Talke, I.N., Krall, L., and Kramer, U. (2004). Cross-species microarray
transcript profiling reveals high constitutive expression of metal homeostasis
genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37,
251-268.
Bernard, C., Roosens, N., Czernic, P., Lebrun, M., and Verbruggen, N. (2004). A
novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens.
FEBS letters 569, 140-148.
Bird, D., Beisson, F., Brigham, A., Shin, J., Greer, S., Jetter, R., Kunst, L., Wu, X.,
Yephremov, A., and Samuels, L. (2007). Characterization of Arabidopsis
ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for
cuticular lipid secretion. Plant J 52, 485-498.
Blakeslee, J.J., Peer, W.A., and Murphy, A.S. (2005). Auxin transport. Current
opinion in plant biology 8, 494-500.
Blakeslee, J.J., Bandyopadhyay, A., Lee, O.R., Mravec, J., Titapiwatanakun, B.,
Sauer, M., Makam, S.N., Cheng, Y., Bouchard, R., Adamec, J., Geisler, M.,
Nagashima, A., Sakai, T., Martinoia, E., Friml, J., Peer, W.A., and Murphy,
A.S. (2007). Interactions among PIN-FORMED and P-glycoprotein auxin
transporters in Arabidopsis. The Plant cell 19, 131-147.
Buer, C.S., Muday, G.K., and Djordjevic, M.A. (2007). Flavonoids are differentially
taken up and transported long distances in Arabidopsis. Plant physiology 145,
478-490.
Callahan, D.L., Baker, A.J., Kolev, S.D., and Wedd, A.G. (2006). Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11, 2-12.
Callahan, D.L., Roessner, U., Dumontet, V., Perrier, N., Wedd, A.G., O''Hair, R.A., Baker, A.J., and Kolev, S.D. (2008). LC-MS and GC-MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree
Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand. Phytochemistry 69, 240-251.
Campbell, E.J., Schenk, P.M., Kazan, K., Penninckx, I.A., Anderson, J.P., Maclean, D.J., Cammue, B.P., Ebert, P.R., and Manners, J.M. (2003). Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant physiology 133, 1272-1284.
Chen, S., Sanchez-Fernandez, R., Lyver, E.R., Dancis, A., and Rea, P.A. (2007). Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. The Journal of biological chemistry 282, 21561-21571.
Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475-486.
Colangelo, E.P., and Guerinot, M.L. (2006). Put the metal to the petal: metal uptake and transport throughout plants. Current opinion in plant biology 9, 322-330.
Cowman, A.F., Galatis, D., and Thompson, J.K. (1994). Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1
gene and cross-resistance to halofantrine and quinine. Proceedings of the National Academy of Sciences of the United States of America 91, 1143-1147.
Curie, C., Alonso, J.M., Le Jean, M., Ecker, J.R., and Briat, J.F. (2000). Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. The Biochemical journal 347 Pt 3, 749-755.
Ducos, E., Fraysse, S., and Boutry, M. (2005). NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum. FEBS letters 579, 6791-6795.
Eichhorn, H., Klinghammer, M., Becht, P., and Tenhaken, R. (2006). Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. Journal of experimental botany 57, 2193-2201.
Fetsch, E.E., and Davidson, A.L. (2002). Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proceedings of the National Academy of Sciences of the United States of America 99,
9685-9690.
Filatov, V., Dowdle, J., Smirnoff, N., Ford-Lloyd, B., Newbury, H.J., and Macnair, M.R. (2006). Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc
hyperaccumulation. Molecular ecology 15, 3045-3059.
Foote, S.J., Thompson, J.K., Cowman, A.F., and Kemp, D.J. (1989). Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57, 921-930.
Footitt, S., Dietrich, D., Fait, A., Fernie, A.R., Holdsworth, M.J., Baker, A., and Theodoulou, F.L. (2007). The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant physiology 144, 1467-1480.
Froshauer, S., and Beckwith, J. (1984). The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF
intercistronic region. The Journal of biological chemistry 259, 10896-10903.
Gaedeke, N., Klein, M., Kolukisaoglu, U., Forestier, C., Muller, A., Ansorge, M., Becker, D., Mamnun, Y., Kuchler, K., Schulz, B., Mueller-Roeber, B., and Martinoia, E. (2001). The Arabidopsis thaliana ABC transporter AtMRP5
controls root development and stomata movement. The EMBO journal 20, 1875-1887.
Gaillard, S., Jacquet, H., Vavasseur, A., Leonhardt, N., and Forestier, C. (2008). AtMRP6/AtABCC6, an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in
Arabidopsis thaliana. BMC plant biology 8, 22.
Garcia, O., Bouige, P., Forestier, C., and Dassa, E. (2004). Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. Journal of
molecular biology 343, 249-265.
Geisler, M., Girin, M., Brandt, S., Vincenzetti, V., Plaza, S., Paris, N., Kobae, Y., Maeshima, M., Billion, K., Kolukisaoglu, U.H., Schulz, B., and Martinoia, E. (2004). Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Molecular biology of the cell 15, 3393-3405.
Geisler, M., Blakeslee, J.J., Bouchard, R., Lee, O.R., Vincenzetti, V., Bandyopadhyay, A., Titapiwatanakun, B., Peer, W.A., Bailly, A., Richards, E.L., Ejendal, K.F., Smith, A.P., Baroux, C., Grossniklaus, U., Muller, A.,
Hrycyna, C.A., Dudler, R., Murphy, A.S., and Martinoia, E. (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44, 179-194.
Goodman, C.D., Casati, P., and Walbot, V. (2004). A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. The Plant cell 16,
1812-1826.
Goossens, A., Hakkinen, S.T., Laakso, I., Oksman-Caldentey, K.M., and Inze, D. (2003). Secretion of secondary metabolites by ATP-binding cassette transporters
in plant cell suspension cultures. Plant physiology 131, 1161-1164.
Grec, S., Vanham, D., de Ribaucourt, J.C., Purnelle, B., and Boutry, M. (2003). Identification of regulatory sequence elements within the transcription promoter
region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J 35, 237-250.
Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M.L., and Eide, D. (1998). Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America 95, 7220-7224.
Hassinen, V.H., Tervahauta, A.I., Halimaa, P., Plessl, M., Peraniemi, S., Schat, H., Aarts, M.G., Servomaa, K., and Karenlampi, S.O. (2007). Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi
caerulescens. Planta 225, 977-989.
Hatano, A., and Shoji, R. (2008). Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model. Environmental toxicology 23, 372-378.
Henikoff, S., Greene, E.A., Pietrokovski, S., Bork, P., Attwood, T.K., and Hood, L. (1997). Gene families: the taxonomy of protein paralogs and chimeras. Science
278, 609-614.
Higgins, C.F. (1992). ABC transporters: from microorganisms to man. Annual review of cell biology 8, 67-113.
Higgins, C.F., and Linton, K.J. (2004). The ATP switch model for ABC transporters. Nature structural & molecular biology 11, 918-926.
Hsu, Y.T., and Kao, C.H. (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, cell & environment 26, 867-874.
Huang, Z.J., Huang, Y., and Peng, B. (2006). Influence of copper, cadmium on growth and cation exchange capacity of two kinds of ectomycorrhizal funguses. Huan jing ke xue 27, 1654-1658.(in Chinese)
Ito, H., and Gray, W.M. (2006). A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant physiology 142, 63-74.
Jasinski, M., Ducos, E., Martinoia, E., and Boutry, M. (2003). The ATP-binding cassette transporters: structure, function, and gene family comparison between rice and Arabidopsis. Plant physiology 131, 1169-1177.
Jasinski, M., Stukkens, Y., Degand, H., Purnelle, B., Marchand-Brynaert, J., and Boutry, M. (2001). A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. The Plant cell 13, 1095-1107.
Kasuga, M., Miura, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by
gene transfer. Plant & cell physiology 45, 346-350.
Kerr, I.D., Berridge, G., Linton, K.J., Higgins, C.F., and Callaghan, R. (2003). Definition of the domain boundaries is critical to the expression of the nucleotide-binding domains of P-glycoprotein. Eur Biophys J 32, 644-654.
Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., and Lee, Y. (2007). The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50, 207-218.
Kim, D.Y., Bovet, L., Kushnir, S., Noh, E.W., Martinoia, E., and Lee, Y. (2006a). AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant physiology 140, 922-932.
Kim, S.A., Punshon, T., Lanzirotti, A., Li, L., Alonso, J.M., Ecker, J.R., Kaplan, J., and Guerinot, M.L. (2006b). Localization of iron in Arabidopsis seed requires
the vacuolar membrane transporter VIT1. Science 314, 1295-1298.
Klein, M., Burla, B., and Martinoia, E. (2006). The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants.
FEBS letters 580, 1112-1122.
Klein, M., Martinoia, E., Hoffmann-Thoma, G., and Weissenbock, G. (2000). A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by
glutathione and its conjugates. Plant J 21, 289-304.
Klein, M., Martinoia, E., Hoffmann-Thoma, G., and Weissenbock, G. (2001). The ABC-like vacuolar transporter for rye mesophyll flavone glucuronides is not species-specific. Phytochemistry 56, 153-159.
Klein, M., Perfus-Barbeoch, L., Frelet, A., Gaedeke, N., Reinhardt, D., Mueller-Roeber, B., Martinoia, E., and Forestier, C. (2003). The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J 33, 119-129.
Klein, M., Geisler, M., Suh, S.J., Kolukisaoglu, H.U., Azevedo, L., Plaza, S., Curtis, M.D., Richter, A., Weder, B., Schulz, B., and Martinoia, E. (2004). Disruption
of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant J 39, 219-236.
Kobae, Y., Sekino, T., Yoshioka, H., Nakagawa, T., Martinoia, E., and Maeshima, M. (2006). Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection.
Plant & cell physiology 47, 309-318.
Kobayashi, T., Nakayama, Y., Itai, R.N., Nakanishi, H., Yoshihara, T., Mori, S., and Nishizawa, N.K. (2003). Identification of novel cis-acting elements, IDE1 and
IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J 36, 780-793.
Kobayashi, T., Yoshihara, T., Itai, R.N., Nakanishi, H., Takahashi, M., Mori, S., and Nishizawa, N.K. (2007). Promoter analysis of iron-deficiency-inducible barley IDS3 gene in Arabidopsis and tobacco plants. Plant Physiol Biochem 45, 262-269.
Kolukisaoglu, H.U., Bovet, L., Klein, M., Eggmann, T., Geisler, M., Wanke, D., Martinoia, E., and Schulz, B. (2002). Family business: the multidrug-resistance related protein (MRP) ABC transporter genes in Arabidopsis thaliana. Planta 216, 107-119.
Kramer, U., Talke, I.N., and Hanikenne, M. (2007). Transition metal transport. FEBS letters 581, 2263-2272.
Kropat, J., Tottey, S., Birkenbihl, R.P., Depege, N., Huijser, P., and Merchant, S. (2005). A regulator of nutritional copper signaling in Chlamydomonas is an SBP
domain protein that recognizes the GTAC core of copper response element. Proceedings of the National Academy of Sciences of the United States of America 102, 18730-18735.
Larsen, P.B., Cancel, J., Rounds, M., and Ochoa, V. (2007). Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225, 1447-1458.
Larsen, P.B., Geisler, M.J., Jones, C.A., Williams, K.M., and Cancel, J.D. (2005). ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J 41, 353-363.
Lee, E.K., Kwon, M., Ko, J.H., Yi, H., Hwang, M.G., Chang, S., and Cho, M.H. (2004). Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant physiology 134,
528-538.
Lee, M., Lee, K., Lee, J., Noh, E.W., and Lee, Y. (2005). AtPDR12 contributes to lead resistance in Arabidopsis. Plant physiology 138, 827-836.
Lewis, D.R., Miller, N.D., Splitt, B.L., Wu, G., and Spalding, E.P. (2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with
mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. The Plant cell 19, 1838-1850.
Lin, R., and Wang, H. (2005). Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant physiology 138,
949-964.
Luo, B., Xue, X.Y., Hu, W.L., Wang, L.J., and Chen, X.Y. (2007). An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant & cell physiology 48, 1790-1802.
Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, U., Muller-Rober, B., and Schulz, B. (2002). Multifunctionality of plant ABC
transporters--more than just detoxifiers. Planta 214, 345-355.
Mentewab, A., and Stewart, C.N., Jr. (2005). Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nature biotechnology 23, 1177-1180.
Merchant, S., and Dreyfuss, B.W. (1998). Posttranslational assembly of photosynthetic metalloproteins. Annual review of plant physiology and plant molecular biology 49, 25-51.
Migocka, M., Nowojska, E., and Klobus, G. (2007). H(+)-coupled heavy metal transport in plants. Postepy biochemii 53, 272-279.
Moons, A. (2003). Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS letters
553, 370-376.
Moons, A. (2008). Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid
stresses. Planta.
Multani, D.S., Briggs, S.P., Chamberlin, M.A., Blakeslee, J.J., Murphy, A.S., and Johal, G.S. (2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81-84.
Nagashima, A., Suzuki, G., Uehara, Y., Saji, K., Furukawa, T., Koshiba, T., Sekimoto, M., Fujioka, S., Kuroha, T., Kojima, M., Sakakibara, H., Fujisawa, N., Okada, K., and Sakai, T. (2008). Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in
both a PGP19-dependent and a PGP19-independent manner. Plant J 53, 516-529.
Natera, S.H., Ford, K.L., Cassin, A.M., Patterson, J.H., Newbigin, E.J., and Bacic,A. (2008). Analysis of the Oryza sativa plasma membrane proteome using combined protein and peptide fractionation approaches in conjunction with mass
spectrometry. Journal of proteome research 7, 1159-1187.
Nielsen, K.M., Bones, A.M., Smalla, K., and van Elsas, J.D. (1998). Horizontal gene transfer from transgenic plants to terrestrial bacteria--a rare event? FEMS microbiology reviews 22, 79-103.
Noh, B., Murphy, A.S., and Spalding, E.P. (2001). Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. The Plant cell 13, 2441-2454.
Noh, B., Bandyopadhyay, A., Peer, W.A., Spalding, E.P., and Murphy, A.S. (2003). Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin
efflux protein PIN1. Nature 423, 999-1002.
Ortiz, D.F., Ruscitti, T., McCue, K.F., and Ow, D.W. (1995). Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. The Journal of biological chemistry 270, 4721-4728.
Ozolina, N.V., Pradedova, E.V., Platonova, T.A., and Salyaev, R.K. (2004). Detection of vanadate-inhibited ATPase activity on the red beet tonoplast and its
relationship with ABC-transporters. Doklady 396, 158-160.
Palmer, E., and Freeman, T. (2004). Investigation Into the use of C- and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays. Comparative and functional genomics 5, 342-353.
Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R.B., Hofer, R., Schreiber, L., Chory, J., and Aharoni, A. (2007). The Arabidopsis DESPERADO/ AtWBC11 transporter is required for cutin and wax secretion.
Plant physiology 145, 1345-1360.
Papoyan, A., and Kochian, L.V. (2004). Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant physiology
136, 3814-3823.
Pena, L.B., Zawoznik, M.S., Tomaro, M.L., and Gallego, S.M. (2008). Heavy metals effects on proteolytic system in sunflower leaves. Chemosphere 72, 741-746.
Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L., Lasat, M.M., Garvin, D.F., Eide, D., and Kochian, L.V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of
the National Academy of Sciences of the United States of America 97, 4956-4960.
Petrasek, J., Mravec, J., Bouchard, R., Blakeslee, J.J., Abas, M., Seifertova, D., Wisniewska, J., Tadele, Z., Kubes, M., Covanova, M., Dhonukshe, P., Skupa, P., Benkova, E., Perry, L., Krecek, P., Lee, O.R., Fink, G.R., Geisler, M.,Murphy, A.S., Luschnig, C., Zazimalova, E., and Friml, J. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914-918.
Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L., and Samuels, A.L. (2004). Plant cuticular lipid export requires an
ABC transporter. Science 306, 702-704.
Quinn, J.M., Eriksson, M., Moseley, J.L., and Merchant, S. (2002). Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. Plant physiology 128, 463-471.
Ravna, A.W., and Sager, G. (2008). Molecular model of the outward facing state of the human multidrug resistance protein 4 (MRP4/ABCC4). Bioorganic & medicinal chemistry letters 18, 3481-3483.
Ray, J.L., and Nielsen, K.M. (2005). Experimental methods for assaying natural transformation and inferring horizontal gene transfer. Methods in enzymology
395, 491-520.
Rea, P.A. (2007). Plant ATP-binding cassette transporters. Annual review of plant biology 58, 347-375.
Rea, P.A., Li, Z.S., Lu, Y.P., Drozdowicz, Y.M., and Martinoia, E. (1998). From vacuolar Gs-X pumps to multispecific abc transporters. Annual review of plant
physiology and plant molecular biology 49, 727-760.
Rizzi, A., Pontiroli, A., Brusetti, L., Borin, S., Sorlini, C., Abruzzese, A., Sacchi, G.A., Vogel, T.M., Simonet, P., Bazzicalupo, M., Nielsen, K.M., Monier, J.M., and Daffonchio, D. (2008). Strategy for in situ detection of natural transformation-based horizontal gene transfer events. Applied and environmental microbiology 74, 1250-1254.
Rommens, C.M. (2006). Kanamycin resistance in plants: an unexpected trait controlled by a potentially multifaceted gene. Trends in plant science 11, 317-319.
Ross, J.I., Eady, E.A., Cove, J.H., Cunliffe, W.J., Baumberg, S., and Wootton, J.C. (1990). Inducible erythromycin resistance in staphylococci is encoded by a
member of the ATP-binding transport super-gene family. Molecular microbiology 4, 1207-1214.
Sancenon, V., Puig, S., Mateu-Andres, I., Dorcey, E., Thiele, D.J., and Penarrubia, L. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. The Journal of biological chemistry 279,
15348-15355.
Sanchez-Fernandez, R., Davies, T.G., Coleman, J.O., and Rea, P.A. (2001). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. The Journal of biological chemistry 276, 30231-30244.
Santelia, D., Vincenzetti, V., Azzarello, E., Bovet, L., Fukao, Y., Duchtig, P., Mancuso, S., Martinoia, E., and Geisler, M. (2005). MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair
development. FEBS letters 579, 5399-5406.
Sauna, Z.E., Kim, I.W., and Ambudkar, S.V. (2007). Genomics and the mechanism of P-glycoprotein (ABCB1). Journal of bioenergetics and biomembranes 39, 481-487.
Schaaf, G., Honsbein, A., Meda, A.R., Kirchner, S., Wipf, D., and von Wiren, N. (2006). AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. The Journal
of biological chemistry 281, 25532-25540.
Schluter, K., Futterer, J., and Potrykus, I.(1995). "Horizontal" gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs--if at all--at an extremely low frequency. Biotechnology 13, 1094-1098.
Sharma, R., Awasthi, Y.C., Yang, Y., Sharma, A., Singhal, S.S., and Awasthi, S. (2003). Energy dependent transport of xenobiotics and its relevance to multidrug resistance. Current cancer drug targets 3, 89-107.
Shi, J., Wang, H., Schellin, K., Li, B., Faller, M., Stoop, J.M., Meeley, R.B., Ertl, D.S., Ranch, J.P., and Glassman, K. (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature biotechnology 25, 930-937.
Shitan, N., Bazin, I., Dan, K., Obata, K., Kigawa, K., Ueda, K., Sato, F., Forestier, C., and Yazaki, K. (2003). Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in
Coptis japonica. Proceedings of the National Academy of Sciences of the United States of America 100, 751-756.
Sidler, M., Hassa, P., Hasan, S., Ringli, C., and Dudler, R. (1998). Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell
elongation in the light. The Plant cell 10, 1623-1636.
Song, W.Y., Sohn, E.J., Martinoia, E., Lee, Y.J., Yang, Y.Y., Jasinski, M., Forestier, C., Hwang, I., and Lee, Y. (2003). Engineering tolerance and accumulation of
lead and cadmium in transgenic plants. Nature biotechnology 21, 914-919.
Stacey, M.G., Koh, S., Becker, J., and Stacey, G. (2002). AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. The Plant cell 14, 2799-2811.
Stacey, M.G., Patel, A., McClain, W.E., Mathieu, M., Remley, M., Rogers, E.E., Gassmann, W., Blevins, D.G., and Stacey, G. (2008). The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing
seeds. Plant physiology 146, 589-601.
Stefkova, J., Poledne, R., and Hubacek, J.A. (2004). ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiological research Academia Scientiarum Bohemoslovaca 53, 235-243.
Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., Lipka, V., and Somerville, S. (2006). Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. The Plant cell 18, 731-746.
Stukkens, Y., Bultreys, A., Grec, S., Trombik, T., Vanham, D., and Boutry, M. (2005). NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant physiology 139, 341-352.
Swarbreck, D., Ripoll, P.J., Brown, D.A., Edwards, K.J., and Theodoulou, F. (2003). Isolation and characterisation of two multidrug resistance associated protein genes from maize. Gene 315, 153-164.
Talke, I.N., Hanikenne, M., and Kramer, U. (2006). Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis
halleri. Plant physiology 142, 148-167.
Terasaka, K., Shitan, N., Sato, F., Maniwa, F., Ueda, K., and Yazaki, K. (2003). Application of vanadate-induced nucleotide trapping to plant cells for detection of ABC proteins. Plant & cell physiology 44, 198-200.
Terasaka, K., Blakeslee, J.J., Titapiwatanakun, B., Peer, W.A., Bandyopadhyay, A., Makam, S.N., Lee, O.R., Richards, E.L., Murphy, A.S., Sato, F., and Yazaki, K. (2005). PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin
transport in Arabidopsis thaliana roots. The Plant cell 17, 2922-2939.
Theodoulou, F.L. (2000). Plant ABC transporters. Biochimica et biophysica acta 1465,79-103.
Trombik, T., Jasinski, M., Crouzet, J., and Boutry, M. (2008). Identification of a cluster IV pleiotropic drug resistance transporter gene expressed in the style of
Nicotiana plumbaginifolia. Plant molecular biology 66, 165-175.
van de Mortel, J.E., Almar Villanueva, L., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P.D., Ver Loren van Themaat, E., Koornneef, M., and Aarts, M.G. (2006). Large expression differences in genes for iron and zinc
homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant physiology 142, 1127-1147.
van den Brule, S., Muller, A., Fleming, A.J., and Smart, C.C. (2002). The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J 30, 649-662.
Varotto, C., Maiwald, D., Pesaresi, P., Jahns, P., Salamini, F., and Leister, D. (2002). The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31, 589-599.
Verrier, P.J., Bird, D., Burla, B., Dassa, E., Forestier, C., Geisler, M., Klein, M., Kolukisaoglu, U., Lee, Y., Martinoia, E., Murphy, A., Rea, P.A., Samuels, L.,
Schulz, B., Spalding, E.J., Yazaki, K., and Theodoulou, F.L. (2008). Plant ABC proteins--a unified nomenclature and updated inventory. Trends in plant science 13, 151-159.
Walker, J.E., Saraste, M., Runswick, M.J., and Gay, N.J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. The
EMBO journal 1, 945-951.
Whiteman, S.A., Nuhse, T.S., Ashford, D.A., Sanders, D., and Maathuis, F.J. (2008). A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane
and vacuolar membrane. Plant J.
Windsor, B., Roux, S.J., and Lloyd, A. (2003). Multiherbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana. Nature biotechnology 21, 428-433.
Winje, B.A., Mannsaker, T., Langeland, N., and Heldal, E. (2008). Drug resistance in tuberculosis. Tidsskr Nor Laegeforen 128, 2588-2592.
Wintz, H., Fox, T., Wu, Y.Y., Feng, V., Chen, W., Chang, H.S., Zhu, T., and Vulpe, C. (2003). Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. The Journal of
biological chemistry 278, 47644-47653.
Wright, P.K. (2008). Targeting vesicle trafficking: an important approach to cancer chemotherapy. Recent patents on anti-cancer drug discovery 3, 137-147.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription
factor. Novartis Foundation symposium 236, 176-186; discussion 186-179.
Yamaguchi, H., Nishizawa, N.K., Nakanishi, H., and Mori, S. (2002). IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast. Journal of experimental botany 53, 727-735.
Yazaki, K. (2005). Transporters of secondary metabolites. Current opinion in plant biology 8, 301-307.
Yazaki, K. (2006). ABC transporters involved in the transport of plant secondary metabolites. FEBS letters 580, 1183-1191.
Yazaki, K., Shitan, N., Takamatsu, H., Ueda, K., and Sato, F. (2001). A novel Coptis japonica multidrug-resistant protein preferentially expressed in the alkaloid-accumulating rhizome. Journal of experimental botany 52, 877-879.
Yew, W.W., and Leung, C.C. (2008). Management of multidrug-resistant tuberculosis: Update 2007. Respirology (Carlton, Vic 13, 21-46.
Yi, C., and Deng, X.W. (2005). COP1 - from plant photomorphogenesis to mammalian tumorigenesis. Trends in cell biology 15, 618-625.
Yuan, H., Li, X., Wu, J., Li, J., Qu, X., Xu, W., and Tang, W. (2008). Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance. Current
medicinal chemistry 15, 470-476.
Zhang, W., Ruan, J., Ho, T.H., You, Y., Yu, T., and Quatrano, R.S. (2005). Cis-regulatory element based targeted gene finding: genome-wide identification
of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21, 3074-3081.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊