跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱于珍
研究生(外文):Yu-Chen Chiu
論文名稱:超微細化研磨技術對竹葉萃出物類黃酮含量及抗菌活性之影響
論文名稱(外文):Effect of ultrafine milling on total flavonoids content and antimicrobial activity of bamboo leaf extracts
指導教授:賴喜美賴喜美引用關係
指導教授(外文):Hsi-Mei Lai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:76
中文關鍵詞:竹葉粗萃液超微細化研磨類黃酮抑菌活性
外文關鍵詞:bamboo leaf extractultrafine-millingflavonoidsantimicrobial activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本研究利用超微細化研磨技術進行竹葉之微細化及萃取,探討研磨後的竹葉濾渣之粒子粒徑、粗萃物之化學成分與生物活性物質,以及竹葉粗萃液對細菌生長抑制能力之評估,並針對竹葉中抑菌物質進行初步判定。試驗中所使用之研磨萃取溶劑包括蒸餾水及60%乙醇。結果顯示,在水或60%乙醇中研磨竹葉1 hr後,其平均粒徑及d90顯著下降,延長研磨時間,其粒徑雖持續降低但趨勢漸緩,4 hr研磨後,竹葉樣品平均粒徑為12 μm,d90為25 μm,已達細胞破壁之目標。以水為溶劑,經研磨2 hr之竹葉,其水粗萃液之可溶性糖及總類黃酮含量顯著提高,但總酚類含量並無顯著差異。當以60%乙醇為溶劑進行研磨萃取時,可溶性糖含量減少,但總類黃酮含量顯著提高為1.76 mg catechin equivalent /g竹葉粗粉,顯示60%乙醇為總類黃酮之良好萃取溶劑。乙醇粗萃液之DPPH自由基清除力高於水粗萃液。每克竹葉粗粉含有總氰氫酸含量相當於2.5 μg HCN,經超微細化處理後,竹葉濾渣顆粒之總氰氫酸含量提高為3-4 μg HCN;而竹葉粗萃液之總氰氫酸含量則降低為0.17-0.21 μg HCN,且不受超微細化處理之影響。利用矽膠管柱進行粗萃液初步分離,以高效液相層析進行70%甲醇沖提液之組成分析,結果顯示有三個主要吸收峰,依200-400 nm之UV掃描吸收光譜圖,可能為類黃酮化合物,經質譜儀判定其中兩個吸收峰所代表之化合物可能為異葒草苷或葒草苷及異牡荊苷或牡荊苷。竹葉粗萃物進行抑菌試驗之結果顯示,於濾紙擴散法、孔盤擴散法及序列稀釋法試驗中,以60%乙醇研磨萃取之竹葉粗萃液10倍稀釋倍率對Bacillus cereus及Staphylococcus aureus的生長有顯著的抑制效果,但對Escherichia coli及Salmonella typhimuriun菌之生長卻無顯著抑制效果。在12 hr內,10倍稀釋倍率之乙醇粗萃液便可抑制菌落數增加。以菌落之大小能比較出竹葉乙醇萃液對S. aureus之抑制濃度。而以水為研磨萃取溶劑之竹葉粗萃物,即使以原粗萃液之含量,對本實驗4種測試菌種則均無抑制生長之效果。整體而言,臺灣具有豐富的竹類資源,而竹葉以60%乙醇作為萃取溶劑及超微細化研磨處理有助於提升其類黃酮含量及其對Bacillus cereus 及 Staphylococcus aureus的抑菌活性,因此,竹葉粗萃液作為有抑菌作用之食品添加物之潛力。
Abstract
This study applied ultrafine-milling technology on bamboo leaf. The post-milled particle size of bamboo leaf was examined. The chemical content, bioactive material of bamboo leaf extract, and its ability to suppress bacterial growth were investigated. The antimicrobial material in bamboo leaf was also preliminarily determined. The extracting solvent used in this study included water and 60% ethanol. After a 1 hour ultrafine-milling treatment, using either water or 60% ethanol, the mean particle size and d90 of bamboo leaf decreased obviously. With even longer ultrafine-milling treatment, the mean particle size continued to decrease but changed more slowly. After a 4 hour ultrafine-milling treatment, the mean particle size and d90 were 12 μm and 25 μm, reaching the goal of destructed cell wall. After a 2 hour ultrafine-milling treatment with water, the total soluble carbohydrates and total flavonoids of bamboo leaf extract elevated obviously, but the total phenolics showed no apparent differences. Under the same milling condition except using 60% ethanol, the total soluble carbohydrates of bamboo leaf extract decreased, but the total flavonoids increased to 1.76 mg catechin equivalent /g ground bamboo leaf powder(GP), suggesting that 60% ethanol is a good extracting solvent of flavonoids. The DPPH scavenging capacity of ethanol extract was the highest than that of water extract under all the conditions in this study. The result of total cyanide content analysis showed that dried ground bamboo leaf powder contained 2.5 μg HCN. After ultrafine-milling treatment, the total cyanide content of residue of bamboo leaf increased to 3-4 μg HCN/g GP. But the total cyanide content of bamboo leaf extract decreased obviously after rotary evaporation and cetrifuge treatment. Bamboo leaf extract composition analysis performed by silica gel column, 70% methanol elution and High-performance liquid chromatography (HPLC) demonstrated that there were three major peaks on the HPLC chromatograms of bamboo leaf extract. According to the UV scanning spectra of bamboo leaf extract from 200 to 400 nm wavelength, the components were very likely to be flavonoids, while the Mass spectrometry (MS) was determined as isoorientin (or orientin) and isovitexin (or vitexin). Antimicrobial assay was performed by conducting agar diffusion assay, serial dilution method, and hole-plate diffusion method. The results showed that bamboo leaf ethanol extract can apparently suppress the growth of Bacillus cereus and Staphylococcus aureus at the dilution of 10, but it was ineffective for Escherichia coli and Salmonella typhimuriun. Time-kill method showed that bamboo leaf ethanol extract at the dilution of 10 could persist antimicrobial effects within 12 hours. The inhibitory concentration of bamboo leaf ethanol extract for S. aureus was compared by using colony size method. On the contrary, bamboo leaf water extract, even at the original concentration, had no antimicrobial effect for all the 4 kinds of bacteria in this study.
Bamboo leaf treated with ultrafine-milling using 60% ethanol as extracting solvent could achieve higher flavonoids content and antimicrobial activity for Bacillus cereus and Staphylococcus aureus. According to this study and considering the fact that there are abundant bamboo resources in Taiwan, bamboo leaf extract has great potential to be excellent food additives as antimicrobial agent.
目 錄
中文摘要 ------------------------------------------------------------------------------------------- I
Abstract ------------------------------------------------------------------------------------------- II
目錄 ------------------------------------------------------------------------------------------------ IV
圖目錄 -------------------------------------------------------------------------------------------- VII
表目錄 ----------------------------------------------------------------------------------------------IX
第一章、文獻整理 -------------------------------------------------------------------------------- 1
一、天然的竹類資源 ----------------------------------------------------------------------- 1
二、竹葉萃出物 ----------------------------------------------------------------------------- 3
(一) 化學組成 --------------------------------------------------------------------------- 3
(二) 生理與藥理活性 ------------------------------------------------------------------ 9
(三) 安全評估 -------------------------------------------------------------------------- 17
(四) 食品及藥妝上之應用------------------------------------------------------------ 18
三、微細化研磨技術 ---------------------------------------------------------------------- 21
(一) 球磨研磨之原理 ---------------------------------------------------------------- 21
(二) 微細化研磨技術於食品領域之應用 ---------------------------------------- 25
四、研究目的 ------------------------------------------------------------------------------ 26
第二章、材料與方法 --------------------------------------------------------------------------- 29
一、試驗架構 ------------------------------------------------------------------------------ 29
二、試驗材料 ------------------------------------------------------------------------------ 30
(一) 竹葉原料 ------------------------------------------------------------------------- 30
(二) 菌種與培養基配製 ------------------------------------------------------------- 30
(三) 試藥 ------------------------------------------------------------------------------- 30
三、試驗方法 ------------------------------------------------------------------------------- 31
(一) 一般成分分析 ------------------------------------------------------------------- 31
(二) 微細化研磨之樣品製備 ------------------------------------------------------- 32
(三) 樣品粒徑分析 ------------------------------------------------------------------- 33
(四) 化學成分測定 ------------------------------------------------------------------- 33
(五) 總氰化物測定 ------------------------------------------------------------------- 34
(六) 竹葉粗萃液之液相層析分析 --------------------------------------------- ----36
(七) 抑菌試驗 ------------------------------------------------------------------------- 37
(八) 統計分析 ------------------------------------------------------------------------- 39
第三章、結果與討論 ---------------------------------------------------------------------------- 40
一、竹葉之一般成分分析 ------------------------------------------------------------------ 40
二、超微細化研磨對竹葉粒徑及竹葉萃出物之生物活性成分之影響 ----------- 41
(一) 超微細化研磨對竹葉樣品之顆粒形態及粒徑分布 ---------------------- 41
(二) 超微細化研磨對竹葉粗萃液之化學成分的影響 ------------------------- 44
(三) 超微細化研磨對竹葉濾渣及粗萃液之總氰化物的影響 ---------------- 48
(四) 竹葉粗萃液之高效液相層析管柱分析 ------------------------------------- 51
(五) 結語 ------------------------------------------------------------------------------- 55
三、綠竹葉萃出物抑菌活性之評估------------------------------------------------------- 55
(一) 竹葉水萃液及乙醇萃液之抑菌表現 ---------------------------------------- 56
(二) 竹葉乙醇萃液對S. aureus及 B. cereus的生長抑制 -------------------- 60
(三) 竹葉粗萃液之最低抑制濃度(MIC)測試 ----------------------------------- 62
(四) 竹葉粗萃液之化學成分與其抑菌活性之比較 ---------------------------- 65
(四) 結語 ------------------------------------------------------------------------------- 66

第四章、結論 ------------------------------------------------------------------------------------ 67
第五章、參考文獻 -------------------------------------------------------------------------- 68
圖 目 錄
圖一、黃酮類化合物基本結構圖 -------------------------------------------------------------------- 4
圖二、黃酮類化合物的主要類型及結構圖 ------------------------------------------------------- 5
圖三、毛金竹之竹葉萃出物中四種主要碳苷黃酮之結構 ------------------------------------ 6
圖四、行星式球磨機之結構圖 ---------------------------------------------------------------------- 22
圖五、行星式球磨機中球磨罐公轉軸轉動方向與自轉軸轉動方向相反及相同
時,研磨球相對速度向量的差異 ------------------------------------------------------- 23
圖六、衝擊式碾碎機之結構示意圖 --------------------------------------------------------------- 24
圖七、氣流粉碎機之結構示意圖 ------------------------------------------------------------------- 25
圖八、超微細化竹葉樣品之掃瞄式電子顯微照相圖 ---------------------------------------- 42
圖九、竹葉樣品在水中超微細化處理後之平均體積粒徑分布及累計體積粒徑
分布 ---------------------------------------------------------------------------------------------- 43
圖十、含氰醣苷之植物降解氰醣苷而生成氰氫酸之途徑 ---------------------------------- 49
圖十一、竹葉水粗萃液及乙醇粗萃液的高效液相層析圖 ---------------------------------- 52
圖十二、竹葉乙醇粗萃液之HPLC分析圖中主要吸收峰之掃描吸收圖譜
(200-400 nm) ------------------------------------------------------------------------------- 53
圖十三、不同研磨時間之水粗液及乙醇粗萃,經HPLC分析所得三個主要
吸收峰之相對信號強度百分比圖 --------------------------------------------------- 54
圖十四、不同研磨時間之竹葉乙醇粗萃液對金黃色葡萄球菌及仙人掌桿菌之
抑菌結果 ---------------------------------------------------------------------------------- 56
圖十五、以孔盤擴散法觀察不同研磨時間及不同稀釋倍率之竹葉乙醇粗萃液
對金黃色葡萄球菌及仙人掌桿菌之抑菌結果 ---------------------------------- 57
圖十六、以序列稀釋法觀察不同研磨時間及不同稀釋倍率之竹葉乙醇粗萃
液對金黃色葡萄球菌、仙人掌桿菌、大腸桿菌及沙門氏桿菌之抑
菌結果 ---------------------------------------------------------------------------------------- 58
圖十七、不同濃度之竹葉乙醇粗萃液對金黃色葡萄球菌及仙人掌桿菌生長
抑制之影響 -------------------------------------------------------------------------------- 61
圖十八、金黃色葡萄球菌及仙人掌桿菌在不同稀釋倍率之竹葉乙醇粗萃液
的生長曲線 ------------------------------------------------------------------------------- 62
圖十九、不同濃度之竹葉乙醇粗萃液對金黃色葡萄球菌之菌落大小的影響 ------- 64
圖二十、金黃色葡萄球菌在不同濃度之竹葉乙醇粗萃液之菌落大小 ----------------- 64

表 目 錄
表一、臺灣六種主要經濟竹種的資料整理 ------------------------------------------------------- 1
表二、不同竹種中以不同溶劑萃取出來的竹葉萃出物之抑菌結果 ---------------------- 13
表三、4種常見引發食品中毒之汙染菌 --------------------------------------------------------- 28
表四、HPLC-PDA之流洗梯度條件 ----------------------------------------------------------------- 36
表五、綠竹竹葉粗粉之一般成分分析 ------------------------------------------------------------ 40
表六、竹葉粗粉於水及60%乙醇中研磨0至4 hr後之體積粒徑分布 ----------------- 44
表七、不同研磨時間對竹葉水粗萃液及乙醇粗萃液中可溶性糖、總酚類、總
類黃酮含量及DPPH自由基清除能力之影響 -------------------------------------- 46
表八、研磨2小時對竹葉水粗萃液及乙醇粗萃液之可溶性糖、總酚類、總類
黃酮含量及DPPH自由基清除能力相較於未研磨者之提升程度 ------------- 47
表九、竹葉粗粉與經超微細化之竹葉濾渣及竹葉粗萃液的總氰氫酸含量 ----------- 50
表十、不同研磨時間之水粗萃液及乙醇粗萃液於HPLC分析圖譜中三個主要
吸收峰之相對信號強度百分比 ---------------------------------------------------------- 54
表十一、竹葉水粗萃液與乙醇萃液之總酚類、總類黃酮與總氰氫酸含量及其
抑菌活性 ----------------------------------------------------------------------------------- 65
丁玉强,陳春英。1996。箬竹葉水溶性多醣的色譜研究。色譜,11:470- 472。
丁雨龍,趙奇僧,陳志銀,汪全勝。1994。竹葉結構的比較解部及其對系統分類意義的評價。南京林業大學學報,18 : 1-6。
丁紅秀,高蔭榆,鄭淵月,晁紅娟,夏冬華。2006。毛竹葉柄類黄酮降血糖作用的研究。食品科學,27:742-744。
王玉芬。2008a。超微細化研磨對國產大豆原料之機能性成的影響。臺灣大學碩士學位論文。台北,台灣。
王宇珊。2008b。天然食品防腐劑的研究現狀。黑龍江生態工程職業學院學報,21:66-67。
王建華,張樹方。2002。動物中毒病及毒理學。臺灣中草藥雜誌社,p54-57。台中,台灣。
毛燕,王學利。1998。毛竹等九種竹葉中蛋白質和總糖含量的測定。竹子研究匯刊,17:18-20。
毛燕,劉志坤。2001。毛竹葉揮發性成分的提取與GC-MS分析。福建林學院學報,21 : 265- 267。
行政院農業委員會林務局。2001。臺灣地區林業統計。行政院農業委員會林務局。台北,台灣。
向天勇,張馳,謝達平。2002。箬竹葉抑菌成分的分離纯化及结構分析。湖北民族學院學報(自然科學版),20 : 70-74。
向智男,寧正祥。2006。超微粉碎技術及其在食品工業中的應用。食品研究與開發,2:88-91。
李少鵬,王成林,潘蔚然,蔡侃之。2005。竹葉提取物的抗血栓作用研究。中國熱帶醫學,5:1202-1204。
李水芳,文瑞芝,曾棟,李忠海。2007。闊葉箬竹葉和箬竹葉中揮發油的提取及成分分析。色譜,25:53-57。
李春華,黃可龍,林强。2004。超微细化對三七中總皂苷溶出效果的影響。中草藥,35:647-649。
肖貽崧,張廷志,侯鏡德。2001。苦竹葉中黄酮類化合物的液相色譜-質譜聯用分析。寧波高等專科學校學報,13:123-125。
金萬勤,黃芳,郭立瑋。2001。蒼術、黃柏及二妙丸超細微粉的生物藥劑學的研究 I:掃描電子顯微鏡技術對超細微粉的表徵。中草藥,32:306-308。
吳傳茂,吳周和,曾瑩,何霞輝,陳士英。2000。從植物中提取天然防腐劑的研究。食品科學,21 : 24- 27。
吳耀輝,曾超珍,龔燕飛。2008。桂綠竹竹葉提取物的抗菌作用。食品科技,1:194-196。
侯運豐、劉雨。2007。氣流粉碎設備的發展。中國国非金金屬礦工業導刊,63:39-42。
范鎮基。1990。非蛋白胺基酸的功能與應用。胺基酸雜誌,1:25-34。
林裕仁,黃國雄,王瀛生。2003。淺談竹炭之生產與利用。林業研究專訊,10: 23-27。
周兆祥,陳鋼敏,王静兒。1992。竹葉中礦物質元素的測定。林產化工通訊,26 : 22- 25。
周琦,王敏傳,王以美,朱慶。2006。竹葉提取物的抗血栓作用。審陽藥科大學學報,23:459-462。
姚志蕊,曹光群,楊成。2008。毛竹葉抑菌活性成分提取工藝研究。林產化學與工業,28:51-54。
唐浩國,鄭衛東,陳宗道。2005。麻竹葉黃酮類成分研究。中國農學通報,21:114-118。
唐莉莉,丁霄霖。2000。竹葉多醣的分離提取及其生物活性研究。食品研究與開發,21 : 8-10。
國立臺灣大學生物多樣性研究中心。2005。台灣的自然資源與生態資料庫(III)-農林漁牧。行政院農業委員會林務局。台北,台灣。
陸志科,謝碧霞,李安平。2005。麻竹竹葉提取液的抗菌性能。中南林學院學報25:56-59。
陳純馨,陳浙。2000。竹葉葉綠素的提取及其穩定性研究。食品研究與開發,3:17-18。
莫開菊,張中利。2000。竹葉提取物對微生物抑制作用研究。湖北民族學院學報(自然科學版),18:16-18。
許暉,孫蘭萍。2007。亞麻籽脱毒的研究進展。中國食物與營養,10:26-28。
黄占旺,鄒雙雙,熊水波。2005。毛竹葉提取物抑菌作用的初步研究。江西農業大學學報,27:690-693。
黄明福、張文軍、王洪援。2002。超微细粉碎設備的研究進展。遼寧工程技術大學學報报,21:528-530。
張英。2002。天然功能性竹葉提取物--竹葉黄酮。中國食品添加劑,3:53-57。
張英。2004。竹葉黃酮的生理與藥理活性。世界竹籐通訊,2:1-11。
張英,丁霄霖。1996。竹葉有效成分和抗活性氧自由基效能的研究。竹子研究匯刊,15:18-25。
張英,丁霄霖,王樹英。1997。竹葉特種氨基酸的存在及其生物學意義。無錫輕工大學學報,6:29-31。
張英,丁霄霖,王樹英。1998。羥化賴氨酸清除活性氧自由基能力的研究。無錫輕工大學學報,17:58-61。
張英,沈建福,俞卓裕,陸柏益,樓鼎鼎。2004。竹葉黃酮作為抗衰老護膚因子的應用基礎研究。林產化學與工業,24:95-100。
張英,吳曉琴,傅小傳。2001。强化竹葉提取物對麥乳精抗氧化性能的改進。食品科學,22:76-79。
傅曉春,李少鶻,王希,楊日立。2006。竹葉提取物對缺氧/復氧心肌細胞的保護作用。現代食品與藥品雜誌,16:18-21。
鄒耀洪。1996。箬竹葉中黄酮類化合物的高效液相色譜分析。分析化學,24:216-219。
楊和平,易亮,高琼。2008。純植物抗菌劑抗菌效果及穩定性研究。實用預防醫學,15:899-900。
楊宏志,毛志懷。2004。不同處理方法降低亞麻籽中氰化氫含量的效果。中國農業大學學報,9:65-67。
楊春瑜,薛海晶,夏文水。2007。超微粉碎對綠茶黄酮類物質提取率及風味物質含量的影響。食品科學,28:319-324。
楊衛東,費學謙,王敬文。2006。不同溶劑對竹葉提取物抑菌作用的影響。食品工業科技,27:77-79。
蔣企洲,歐瑜,平濤,趙文峰。2008。箬竹葉黄酮對油脂的抗氧化性研究。實用臨床醫藥雜誌,12:50-51。
蔣新龍。2004。竹醋液的生產及其應用。竹子研究匯刊,23:34-37。
劉彩兵。2004。米糠與麥麩的超微細化研究。四川大學碩士學位論文。
操海群,岳永德,彭鎮華,花日茂,湯鋒。2005。毛竹提取物的抑菌活性及其有效成分的初步分離。植物病理學報,35:428-433。
錢效林。2003。研磨介質和助磨劑對超細粉碎的影響。中國陶瓷月刊,13:16-18。
賴喜美,林佩吟。2003。綠竹筍生長與老化機制之探討及相關功能基因之利用--綠竹筍生長及採收後醣類組成與結構分析。農業生物技術國家型科技計畫成果報告。台北,台灣。
AACC. 1999. Approved method of the American Association of Cereal Chemist, 10th edn., AACC Inc., MN. USA.
Bradbury, J. H., Bradbury, M. G., Egan, S. V. 1994. Comparison of methods of analysis of cyanogens in cassava. Acta Horticulturae, 375, 87–96.
Cardoso, A. P., Ernesto, M., Cliff, J., Egan, S. V., & Bradbury, J. H. 1998. Cyanogenic potential of cassava flour: field trial in Mozambique of a simple kit. International Journal of Food Sciences and Nutrition, 49: 93–99.
Chau, C. F., Hsu, P. K., Chien, P. J. 2007. An exploitation of the antimicrobial potential of a fruit insoluble fibre by micronization. European Food Research and Technology, 225: 199–204.
Chau, C. F., Wen, Y. L., Wang, Y. T. 2006. Effects of micronisation on the characteristics and physicochemical properties of insoluble fibres. Journal of the Science of Food and Agriculture, 86: 2380–2386.
Chen, Q., Wu, L. J., Wang, J., Li, H. 2002. Studies on the chemical constituents of Lophatherum gracile Brongn. Journal of Shenyang Pharmaceutical Universit, 19: 23-25.
Chen, Y.,Lin, X. 2006. Antimicrobial activity of leaves extracts from Sinaraundi narianitida. Food Chemistry, 27: 64-67.
Cheng, K. J., Chen, J., Liang G. L., Yao, H., Lin, H. F., Wei, S. M., Yang, J., Hu, C. Q. 2005. Taxiphyllin : a cyanogenic glucoside with tyrosinase inhibitory activity from the shoots of Pleioblastus amarus. Natural Product Research and Development, 17: 733-736.
Chuyen, N. V., Kutata, T., Kato, H. 1982. Antimicrobial activity of kumazasa. Agricultural Biology and Chemistry, 46, 4: 971-978.
Craeyveld, R. V., Van,V. Delcour, J. A., Couetin, C. M. 2008. Ball milling improves extractability and affects molecular properties of psyllium (Plantago ovate Forsk) seed husk arabinoxylan. J. Agric. Food Chem., 56: 11306–11311.
Cushnie, T. P. T., Lamb, A. J. 2005a. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. Journal of Ethnopharmacology, 101: 243-248.
Cushnie, T. P. T., Lamb, A. J. 2005b. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26: 343-356.
Dangles, O. & Dufour, C. 2005. Flavonoid-Protein Interactions. Flavonoids: Chemistry, Biochemistry and Applications. Edited by Øyvind, M. Andersen, O. M., Markham, K. R. Baker & Taylor Books. New Jersey. USA.
Denyer, S. P. and Maillard, J. Y. 2002. Cellar impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. Journal of Applied Microbiology, 92: 35S-45S.
Dubois, M., Gilles, K. A., Hamilton, J. K, Robers, A. P. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356.
FAO/WHO. 1991. Joint FAO/WHO food standards programme, Codex Alimentarius Commission XII, Supplement 4. Rome, Italy.
Feng, Y. T., Han, K., Owen, D. R. J. 2004. Discrete element simulation of the dynamics of high energy planetary ball milling processes. Materials Science & Engineering. A, Structural materials: properties, microstructure and processing. 375-77: 815-819.
Francisco, I. A., Pinotti, M. H. P. 2000. Cyanogenic glycosides in plants. Brazilian archives of biology and technology. 43, 5: 487-492.
Guo, X. F., Yue, Y. D., Tang, F., Wang, J., Yao, X. 2008a. Detection of antioxidative capacity of bamboo leaf extract by scavenging superoxide anion free radical. Spectroscopy and Spectral Analysis. 28: 1823-1826.
Guo, X. F., Yue, Y. D., Tang, F., Wang, J., Yao, X. 2008b. Detection of antioxidative capacity of bamboo leaf extract by scavenging organic free radical DPPH. Spectroscopy and spectral analysis. 28, 7: 1578-1582.
Harborne, J.B., Baxter, H. 1999. The handbook of natural flavonoids. Vols 1& 2. Chichester, UK.
Haque, M. R.& Bradbury, J. 2002. Total cyanide determination of plants and foods using the picrate and acid hydrolysis methods. Food Chemistry, 77: 107–114.
Hu, C., Zhang, Y., Kitts, D. D. 2000. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. henonis leaf extract in vitro. Journal of Agriculture and Food Chemistry, 48: 3170-3176.
Huang, W., Wang, Y., Hu, X. B., Yin, J. T. 2002. Study on antimicrobial characteristics of bamboo leaf extracts. Chemistry and Industry of Forest Products, 22: 68-70.
Ikigai, H., Nakae, T., Hara, Y., Shimamura, T. 1993. Bactericidal catechins damage the lipid bilayer. Biochimica et Biophysica Acta. 1147: 132-136.
Ilham, A. M., Vimala, S., Rashih, A. A., Rohana, S., Jamaluddin, M., Juliza, M. 2008. Antioxidant and antityroinase properties of Malaysian bamboo leaf extracts. Journal of Tropical Forest Science, 20: 123-131.
Janot, R., Guerard, D. 2005. Ball-milling in liquid media applications to the preparation of anodic materials for lithium-ion batteries. Progress in Materials Science, 50: 1-92.
Kitts, D. D., Wijewickreme, A. N., Hu, C. 2000. Antioxidant properties of north american ginseng extract. Molecular and Cellular Biology, 203: 1-10.
Koyanaka, S., Endoh, S., Ohya, H., Iwata, H. 1997. Particle shape of copper milled by swing-hammer-type impact mill. Powder Technology, 90, 2: 135-140.
Lee, K. W., Kim, Y. J., Lee, H. J. and Lee, C. Y. 2003. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. Journal of Agriculture and Food Chemistry, 51: 7292-7295.
Lin, Y. L., Collier A. C., Liu, W. Y., Berry, M. J., Panee, J. 2008. The inhibitory effect of bamboo extract on the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer. Phytotherapy Research, 22: 1440-1445.
Lou, D. D., Liang, Y., Zhang, Y., Wu, X. Q., Shi, W. H. 2004. Application of AOB (Antioxidant of Bamboo Leaf) on Chinese sausage. Food Science, 25: 189-191.
Lou, B.Y., Wu, X. Q., Tie, X. W., Zhang, Y., Zhang, Y. 2006. Toxicology and safety of antioxidant of bamboo leaves. Part 2: Developmental toxicity test in rats with antioxidant of bamboo leaves. Food and Chemical Toxicology, 44: 1739–1743.
Lou, D. D., Zhang, Y., Wu, X. Q., Zhu, Y. J., Gu, H., Chen, Q. L. 2005. Application of AOB (Antioxidant of Bamboo Leaf ) on puffed food. Journal of the Chinese Cereals and Oils Association, 20: 57-60.
Lou, D. D., Zhang, Y., Wu, X. Q., Zhu, Y. J., Qi, J. J., Zhuo, Y. 2002. Application of AOB (Antioxidant of Bamboo Leaf) on Weixin Western sausage. Food and Fermentation Industries, 30: 13-17.
Lu, B.Y., Wu, X. Q., Tie, X. W., Zhang, Y., Zhang, Y. 2005. Toxicology and safety of antioxidant of bamboo leaves. Part 1: Acute and subchronic toxicity studies on antioxidant of bamboo leaves. Food and Chemical Toxicology, 43: 783-792.
Lu, B.Y., Wu, X. Q., Tie, X. W., Zhang, Y., Zhang, Y. 2006. Toxicology and safety of antioxidant of bamboo leaves. Part 2: Developmental toxicity test in rats with antioxidant of bamboo leaves. Food and Chemical Toxicology, 44: 1739-1743.
Lu, Z. K., Xie, B. X. 2004. Analysis of the active components in bamboo leaves and the antimicrobial effect of their extracts. Journal of Central South Forestry University, 24: 70-73.
Lu, Z. K., Xie, B. X. 2005. A study of chemical composition and antimicrobial activity of different extracts in different kinds of bamboo leaves. Journal of Northwest Forestry University, 20: 49-52.
Mio, H., Kano, J., Saito, F., Kaneko, K. 2004. Optimum revolution and rotational directions and their speeds in planetary ball milling. International Journal of Mineral Processing, 74S: S85–S92.
Pereira, C. A. M., Yariwake, J. H., McCullagh, M. 2005. Distinction of the C-glycosylflavone isomer pairs orientin/isoorientin and vitexin/isovitexin using HPLC-MS exact mass measurement and in-source CID. Phytochemical Analysis, 16: 295–301.
Russell, A.D. 1999. Bacterial resistance to disinfectants : present knowledge and future problems. Journal of Hospital Infection, 43: 57-68.
Schwarzmaier, U. 1977. Cyanogenesis of Dendrocalamus: taxiphyllin. Phytochemistry. 16: 1599-1600.
Shibata, T. 2002. Method for producing green tea in microfine powder. United States Patent US6416803B1.
Song, Z. R., Jiang, X. L., Li, S. W., Xu, Q. 2006. Study on antioxidant activity of extracts of bamboo leaves. Chemical Research and Application 18: 67-69.
Tang H. G., Xiang, J. L., Xu, B. C., Wei, X. X., Chen, Z. D. 2007. Antimutagenic activities of flavonoids from bamboo leaves based on Ames test. Lishizhen Medicine and Materia Medica Research, 18: 2816-2817. 
Tapas, A.R., Sakarkar, D.M., Kakde, R.B. 2008. Flavonoids as nutraceuticals: a review. Tropical Journal of Pharmaceutical Research, 7: 1089-1099.
Toga, M. S., Miller, E. E. and Pratt, D. E. 1984. China seeds as a source of natural antioxidants. Journal of the American Oil Chemists'' Society, 61: 928-931.
Wan, X. Q., Jiang, X. Y. 2006. Comprehensive utilization of bamboo surplus material by processing. Technological Development of Enterprise, 25: 72-74.
Xu, J. P., Vilgalys, R., Mitchell, T. G. 1998. Colony size can be used to determine the MIC of fluconazole for pathogenic yeasts. Journal of Clinical Microbiology, 36: 2383–2385.
Zhang, Y., Bao, B., Lu, B., Ren, Y., Tie, X., Zhang, Y. 2005. Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection. Journal of Chromatography A, 1065: 177–185.
Zhang, Y., Chen, J., Zhang, X. L., Wu, X. Q., Zhang, Y. 2007. Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries. Journal of Agricultural and Food Chemistry, 55: 523-528.
Zhang, Y., Fen, L., Chen, X., Wu, X. Q., Sheng, J. 2000. Bamboo beer--a new kind of healthy beer. Journal of Bamboo Research, 19: 33-37.
Zhang, Y., Jiao, J., Liu, C., Wua, X., Zhang, Y. 2008. Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography. Food Chemistry, 107: 1326–1336.
Zhang, Y., Zhang, Y. 2008. Effect of natural antioxidants on kinetic behavior of acrylamide formation and elimination in low-moisture asparagine–glucose model system. Journal of Food Engineering, 85: 105-115.
林務局全球資訊網。http://www.forest.gov.tw/mp.asp?mp=1
行政院衛生署食品資訊網。http://food.doh.gov.tw/foodnew/food/FoodPoison.aspx
http://www.sturtevantinc.com/micronizer.php
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top