跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳雯婷
研究生(外文):Wen-Ting Chen
論文名稱:pH與有機質對紅壤吸附-脫附硼的影響
論文名稱(外文):Effects of pH and Organic Matter on Boron Adsorption-Desorption in Red Soils
指導教授:何聖賓
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:139
中文關鍵詞:吸附脫附遲滯現象pH蔗渣堆肥雞糞堆肥
外文關鍵詞:boronadsorptiondesorptionhysteresispHsugarcane compost
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硼是植物維持正常生長所必須的微量要素,植物從土壤可攝取硼的多寡,取決於土壤溶液中的硼濃度高低,因此,維持土壤溶液中硼介於足夠植物生長且不至於引起硼毒害的濃度是很重要的。硼吸附-脫附反應主導了硼在土壤中固、液相的分布。硼對植物的有效性除了受土壤性質影響,同時也受施用石灰、肥料或有機質等管理手段的影響,施用石灰導致土壤pH上升而增加土壤對硼的吸附,進而降低了硼的有效性。因此,本研究旨在探討(1)在紅壤中影響硼吸附-脫附的因子;(2)pH對吸附性硼的可逆脫附的影響;以及(3)施用堆肥對土壤吸附-脫附硼的影響。
本試驗選取五種細質地的紅壤,測定在不同pH處理的等溫吸附曲線,在結束硼吸附試驗後,立即以連續稀釋法進行脫附試驗,吸附-脫附數據皆很適合以Freundlich方程式描述。發現紅壤的黏粒、游離氧化鐵、游離氧化鋁、無定形氧化鋁含量較高時,土壤對硼有較高的吸附量。當土壤pH升高時,土壤吸附硼量明顯的增多,尤其以Ca(OH)2取代NaOH調整土壤pH,土壤能夠吸附更多的硼。
土壤的脫附數據分別以傳統表示法與時間依賴表示法呈現土壤等溫脫附曲線,在土壤原有的pH,硼脫附有明顯的遲滯現象,以傳統表示法所得的遲滯係數ndes/nads與λtrad和土壤有機碳含量呈現顯著正相關,而與游離氧化鐵、鋁成顯著負相關。當pH增加時,可觀察到遲滯現象逐漸縮減,吸附性硼變得容易脫附,這個發現或許是因為硼吸附反應與調高pH會增加吸附表面的負電荷,土壤溶液中的B(OH)3為一路易士酸受到負電荷吸引而與表面吸附位置形成外圈錯合物,此種吸附鍵結強度較配位交換鍵結弱,所以被吸附的硼很容易被釋出。
選用龍崗系、老埤系、坡堵系與淡水系土壤添加0、2.5、5、10%的蔗渣堆肥或雞糞堆肥的試驗結果顯示:除了老埤系5%蔗渣堆肥處理土壤對硼的吸附量降低,龍崗系、坡堵系與淡水系土壤,硼的吸附量會隨著蔗渣堆肥施用量增加而有上升的情形。而2.5%雞糞堆肥處理使得四種試驗土壤對硼的吸附量增加,或許是因為添加雞糞堆肥提昇土壤的pH,而有機質或黏土礦物對硼的吸附皆會隨著pH增加而增加,因此,施用有機質所造成土壤pH改變應該是影響硼吸附的重要因子。至於更高的雞糞堆肥施用量所產生的影響則因試驗土壤不同而有所差異。龍崗系土壤硼吸附量會隨著雞糞堆肥施用量增加而略有增加;10%雞糞堆肥處理使得坡堵系與淡水系土壤硼吸附量降低,推測是因有機質的添加導致遮蔽了吸附位置。添加堆肥土壤的硼脫附結果,土壤在低蔗渣堆肥添加量2.5%處理下,土壤脫附硼的遲滯現象有些微的增加,隨著堆肥添加量增加,遲滯係數ndes/nads與λtrad逐漸降低,被土壤吸附的硼能夠較容易被釋出。施用雞糞堆肥的四種土壤,硼脫附的遲滯現象明顯地比未施用雞糞堆肥小。
相對地,以次氯酸鈉去除龍崗系土壤的有機質,發現去除有機質的土壤硼吸附量有大幅度的增加,推論雖然移除有機質會減少土壤中硼的吸附位置,但也因此將原本被有機質遮覆的吸附位置裸露出來,因此增加了硼的吸附。去除有機質土壤對硼的脫附有遲滯現象,但是已去除有機質土壤與未去除有機質土壤有相近的遲滯係數,似乎在同一pH有機質存在與否對硼脫附的難易並沒有很大的影響。
由本論文結果可知,pH的變化是影響土壤供硼狀態最重要的因子,無論是考慮以添加石灰物質改善紅壤pH,或是添加有機質至紅壤改善土壤的理化性質,都必須考慮pH的變化所導致土壤溶液中硼濃度的變動,以適時適量的補充硼肥。
Boron is an essential micronutrient for plant growth. The uptake of B by plants depends mainly on B concentration in soil solutions. It is important to maintain B levels in soil solutions that are sufficient for plant uptake but nontoxic. Adsorption-desorption process governs B distribution between adsorbed and liquid phase. Boron availability to plants depends on soil properties as well as management practice like liming, fertilization and use of organic matters. The increase in soil pH associated with liming could also result in an increase in B retention by the soils and consequently a lower B availability. Therefore, the objectives of the study are on: (1) the factors affecting B adsorption-desorption in five red soils; (2) the effect of pH on the reversibility of adsorbed B; (3) the effect of compost application on B adsorption and the reversibility of adsorbed B.
In this study, boron adsorption and desorption as a function of B concentration and pH were measured in five fine-textured red soils. Immediately after adsorption of B, four consecutive desorption steps were carried out by successive dilution. The sorption results were described well by the Freundlich equation (P<0.01). Boron adsorption capacity increased as soil contains higher amounts of clay, free Fe2O3, free Al2O3, and amorphous Al2O3。Boron adsorption increased markedly as pH increased. This increase was more pronounced when Ca(OH)2, as opposed to NaOH, was used for pH adjustment.
The presentation of desorption data was based on the traditional isotherm approach and on the time-dependent isotherms. Apparent hysteresis was observed that both derivational families of desorption isotherms deviated from the adsorption isotherm for the five soils at their original pH. Moreover, hysteresis coefficients, ndes/nads and λtrad for the traditional approach, had a positive correlation with organic carbon content, but they had a negative correlation with free Fe2O3 and free Al2O3 contents. As pH increased, the hysteresis diminished, and adsorbed B became more reversible. This finding may be due to the fact that B adsorption and raising pH increase the negative charge on the surface, the outer-sphere boric acid complexes formed based on the Lewis acidity of the B metal center. Unlike the strong binding by ligand exchange reaction, the physically-bound boric acid may more readily return to the soil solution when solution concentrations decrease.
Adsorption-desorption of B was investigated in Lunkang, Laopi, Potu, and Tansui soils receiving varying doses of sugarcane compost (SC) or chicken manure compost (CM) (0, 2.5, 5, 10%). Application of sugarcane compost increased B adsorption in Lungkang, Potu, and Tansui soils except for the decreasing B adsorption in Laopi soil with 5% SC amendment. Application of 2.5% chicken manure compost considerably increased pH and B adsorption in the four soils. Because B adsorption on humus or clay minerals is pH-dependent, higher pH might be an important factor improving B adsorption. The effects of higher rate of chicken manure compost on B adsorption are different for the soils. Boron adsorption by Lungkang soil slightly increased as the rate of chicken manure compost increased. Boron adsorption by Potu and Tansui soils decreased with 10% CM amendment. This decrease might be due to the adsorption sites were occluded by organic matter. The degree of hysteresis slightly increased with 2.5% SC amendment. Hysteresis coefficients, ndes/nads and λtrad, decreased with a higher application rate of sugarcane compost, indicated adsorbed B became more reversible. The degree of hysteresis apparently decreased with the amendment with chicken manure compost.
The amount of B adsorbed was considerably greater after the organic matter had been removed from Lungkang soil by NaOCl. It suggested that a portion of adsorption sites are generally coated or occluded by organic matter and become available for B adsorption after removal of the organic matter. Boron desorption showed a hysteretic trend in the treated soil. But little effect of the presence of organic matter in hysteretic desorption was observed compared to the soil without organic matter removal at similar pH.
In conclusion, pH is the most important factor in determining B availability in soil solution. The changes of pH must be taken into consideration before liming or application of organic matter, and consequently the B status in soil solution must be satisfied by B fertilization in adequate concentration for plant growth.
目錄
口試委員會審定書
誌謝
摘要……………………………………………………………………….....................I
Abstract...……………………………………………………………..........................III
目錄 ………………………………………………………………….......................VI
圖目錄……………………………………………………..........................................VII
表目錄 …………………………………………………………………................... XII
第一章、 前言 ………………………………………………………......................1
第二章、硼在紅壤中的吸附¬-脫附行為 ……………………….............................. 6
第一節、緒言 ...…………………………………………………....................... 6
第二節、材料與方法 …………………………………………........................ 8
第三節、結果與討論 …………………………………………........................ 14
第四節、結論 …………………………………………………........................ 33
第三章、pH值對硼在紅壤中吸附¬-脫附行為的影響 ………….......................... 34
第一節、緒言 …………………………………………………........................ 34
第二節、材料與方法 …………………………………………........................ 35
第三節、結果與討論 …………………………………………........................ 37
第四節、結論 …………………………………………………........................ 67
第四章、有機質對硼在紅壤中吸附¬-脫附行為的影響 ………............................ 68
第一節、緒言 …………………………………………………….................... 68
第二節、材料與方法 …………………………………………….................... 70
第三節、結果與討論 ………………….………………………........................ 75
第四節、結論 …………………………………………………...................... 127
第五章、總結............................................................................................................ 129
參考文獻 ………………………………………………………............................ 131
王德南、章國良、周閩。1975。木瓜缺硼症之發現及防治方法之研究。中華農業研究。24:43-53。
何聖賓。1988。台灣耕地土壤硼素的研究。國立台灣大學博士論文。
張淑賢、胡南輝、陳春泉、邱再發。1983。台東地區木瓜缺硼臨界濃度之測定與其土壤中含硼狀況之研究。中華農業研究。32:238-252。
郭鴻裕。1992。台灣地區酸性土壤之分布及其利用現況。酸性土壤之特性及其改良研討會論文集,第3-1至3-7頁。
陳尊賢。1992。台灣農地酸性土壤之特性及其分類。酸性土壤之特性及其改良研討會論文集,第2-1至2-18頁。
陳雯婷。1998。三種台灣農耕土壤對硼素的吸附特性。國立台灣大學碩士論文。
楊滔慈。1960a。台灣土壤可溶性硼素含量之研究。糖試所研究彙報。21:1-16。
楊滔慈。1960b。甜菜需硼量研究。糖試所研究彙報。21:17-26。
詹秀雅。2002。土壤有效性硼測定方法之探討。國立台灣大學碩士論文。
Bell, R.W. 1997. Diagnosis and prediction of boron deficiency for plant production. Plant and Soil. 193:149-168.
Beyrouty, C.A., G.E. van Scoyoc, and J.R. Feldkamp. 1984. Evidence supporting specific adsorption of boron on synthetic aluminum hydroxides. Soil Sci. Soc. Am. J. 48:284-287.
Biggar, J.W., and M. Fireman. 1960. Boron adsorption and release by soils. Soil Sci. Soc. Am. Proc. 24:115-120.
Bingham, F.T., A.L. Page, N.T. Coleman, and K. Flach. 1971. Boron adsorption characteristics of selected amorphous soils from Mexico and Hawaii. Soil Sci. Soc. Am. Proc. 35:546-550.
Bingham, F.T., A.L. Page, N.T. Coleman, and K. Flach. 1971. Boron adsorption characteristics of selected amorphous soils from Mexico and Hawaii. Soil Sci. Soc. Am. J. 35:546-550.

Bloesch, P.M., L.C. Bell, and J.D. Hughes. 1987. Adsorption and desorption of boron by goethite. Aust. J. Soil Res. 25:377-390.
Communar, G., and R. Keren. 2008. Boron adsorption by soils as affected by dissolved organic matter from treated sewage effluent. Soil Sci. Soc. Am. J. 72:492-499.
Couch, E.L., and R.E. Grim. 1968. Boron fixation by illites. Clays Clay Miner. 16:249-256.
Dembitsky, V.M., R. Smoum, A.A. Al-Quntar, H.A. Ali, I. Pergament, and M. Srebnik. 2002. Natural occurrence of boron-containing compounds in plants, algae and microorganisms. Plant Sci. 163:931-942.
Elrashidi, M.A., and G.A. O’Connor. 1982. Boron sorption and desorption in soils. Soil Sci. Soc. Am. J. 46:27-31.
Evanko, C.R., and D.A. Dzombak. 1998. Influence of structural features on sorption of NOM-analogue organic acids to goethite. Environ. Sci. Technol. 32:2846-2855.
Evans, C.M., and D.L. Sparks. 1983. On the chemistry and mineralogy of boron in pure and in mixed systems: a review. Commun. Soil Sci. Plant Anal. 14:827-846.
Evans, L.J. 1987. Retention of boron by agricultural soils from Ontario. Can. J. Soil Sci. 67:33-42.
Gamst, J., T. Olesen, H. De Jonge, P. Moldrup, and D.E. Rolston. 2001. Nonsingularity of naphthalene sorption in soil: Observations and the two-compartment model. Soil Sci. Soc. Am. J. 65:1622-1633.
Garate, A. and B. Meyer. 1983. A study of different manures and their relationship with boron. Agrochimica. 27:431-438.
Gee, G.W., and J.W. Bauder. 1986. Particle-size analysis. p383-411. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Goldberg, S. 1993. Chemistry and mineralogy of boron in soils. p3-44. In U.C. Gupta (ed.) Boron and its role in crop production. CRC Press, Boca Raton, FL.
Goldberg, S. 2005. Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. J. Colloid Interface Sci. 509-517.
Goldberg, S., and H.S. Forster. 1991. Boron sorption on calcareous soils and reference calcites. Soil Sci. 152:304-310.
Goldberg, S., and R.A. Glaubig. 1985. Boron adsorption on aluminum and iron oxide minerals. Soil Sci. Soc. Am. J. 49:1374-1379.
Goldberg, S., and R.A. Glaubig. 1986a. Boron adsorption on California soils. Soil Sci. Soc. Am. J. 50:1173-1176.
Goldberg, S., and R.A. Glaubig. 1986b. Boron adsorption and silicon release by the clay minerals kaolinite, montmorillonite, and illite. Soil Sci. Soc. Am. J. 50:1442-1448.
Goldberg, S., D.L. Corwin, P.J. Shouse, and D.L. Suarez. 2005. Prediction of boron adsorption by field samples of diverse textures. Soil Sci. Soc. Am. J. 69:1379-1388.
Goldberg, S., D.L. Suarez, N.T. Basta, and S.M. Lesch. 2004. Predicting boron adsorption by Midwestern soils using the constant capacitance model. Soil Sci. Soc. Am. J. 68:795-801.
Goldberg, S., D.L. Suarez, and P.J. Shouse. 2008. Influence of soil solution salinity on boron adsorption by soils. Soil Sci. 173:368-374.
Goldberg, S., H.S. Forster, and E.L. Heick. 1993a. Boron adsorption mechanisms on oxides, clay minerals, and soils inferred from ionic strength effects. Soil Sci. Soc. Am. J. 57:704-708.
Goldberg, S., H.S. Forster, and E.L. Heick. 1993b. Temperature effects on boron adsorption by reference minerals and soils. Soil Sci. 156:316-321.
Goldberg, S., H.S. Forster, S.M. Lesch, and E.L. Heick. 1996. Influence of anion competition on boron adsorption by clays and soils. Soil Sci. 161:99-103.
Gu, B., and L.E. Lowe.1990. Studies on the adsorption of boron on humic acids. Can. J. Soil Sci. 70:305-311.
Gu, B., J. Schmitt, Z. Chen, L. Liang, and J.F. McCarthy. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol. 28: 38-46.
Gupta, U.C. 1968. Relationship of total and hot-water soluble boron, and fixation of added B, to properties of podzol soils. Soil Sci. Soc. Am. Proc. 32:45-48.
Gupta, U.C. 1979. Boron nutrition of crops. Adv. Agron. 31:273-307.
Gupta, U.C., and J.A. Cutcliffe. 1972. Effects of lime and boron on brown-heart, leaf tissue calcium/boron ratios, and boron concentrations of rutabaga. Soil Sci. Soc. Am. Proc. 36:936-939.
Gupta, U.C., and J.A. Macleod. 1981. Plant and soil B as influenced by soil pH and calcium sources on podzol soils. Soil Sci. 131:20-24.
Hatcher, J.T., and C.A. Bower. 1967. Adsorption of boron by soils as influenced by hydroxy aluminum and surface area. Sol Sci. 104:422-426.
He, Z.L., X. Yang, and V.C. Baligar. 2001. Increasing nutrient utilization and crop production in the red soil regions of China. Commun. Soil Sci. Plant Anal. 32:1251-1263.
Hingston, F.J. 1964. Reactions between boron and clays. Aust. J. Soil Res. 2:83-95.
Hingston, F.J., A.M. Posner, and J.P. Quirk. 1974. Anion adsorption by goethite and gibbsite. II. Desorption of anions from hydrous oxide surfaces. J. Soil Sci. 25:16-26.
Ho, S.B. 2000. Boron deficiency of crops in Taiwan. Extension Bulletin No. 486. Food & Fertilizer Technology Center.
Hue, N.V., N. Hirunburana, and R.L. Fox. 1988. Boron status of Hawaiian soils as measured by B sorption and plant uptake. Commun. Soil Sci. Plant Anal. 19:517-528.
Keren, R., and D.L. Sparks. 1994. Effect of pH and ionic strength on boron adsorption by pyrophyllite. Soil Sci. Soc. Am. J. 58:1095-1100.
Keren, R., and F.T. Bingham. 1985. Boron in water, soils, and plants. Adv. Soil Sci. 1:229-276.
Keren, R., and G.A. O’Connor. 1982. Effect of exchangeable ions and ionic strength on boron adsorption by montmorillonite and illite. Clays Clay Miner. 30:341-346.
Keren, R., and H. Talpaz. 1984. Boron adsorption by montmorillonite as affected by particle size. Soil Sci. Soc. Am. J. 48:555-559.


Keren, R., and R.G. Gast. 1981. Effect of wetting and drying, and of exchangeable cations, on boron adsorption and release by montmorillonite. Soil Sci. Soc. Am. J. 45:478-482.
Keren, R., and R.G. Gast. 1983. pH-dependent boron adsorption by montmorillonite hydroxyl-aluminum complexes. Soil Sci. Soc. Am. J. 47:1116-1121.
Keren, R., and U. Mezuman. 1981. Boron adsorption by clay minerals using a phenomenological equation. Clays Clay Miner. 29:198-204.
Keren, R., F.T. Bingham, and J.D. Rhoades. 1984. Plant uptake of boron as affected by boron distribution between liquid and solid phases in soil. Soil Sci. Soc. Am. J. 48:297-302.
Keren, R., F.T. Bingham, and J.D. Rhoades. 1985. Effect of clay content in soil on boron uptake and yield of wheat. Soil Sci. Soc. Am. J. 49:1466-1470.
Keren, R., R.G. Gast, and B. Bar-Yosef. 1981. pH-dependent boron adsorption by Na-montmorillonite. Soil Sci. Soc. Am. J. 45:45-48.
Kubota, J., K.C. Berger, and E. Truog. 1948. Boron movement in soils. Soil Sci. Soc. Am. Proc. 13:130-134.
Lavkulich, L.M., and J.H. Wiens. 1970. Comparison of organic matter destruction by hydrogen peroxide and sodium hypochlorite and its effects on selected mineral constituents. Soil Sci. Soc. Am. Proc. 34:755-758.
Loeppert, R.H., C.T. Hallmark, and M.M. Koshy. 1984. Routine procedure for rapid determination of soil carbonates. Soil Sci. Soc. Am. J. 48:1030-1033.
Loeppert, R.H., and W.P. Inskeep. 1996. Iron. P639-664. In D.L. Sparks (ed.) Methods of soil analysis. Part 3. No. 5. SSSA and ASA, Madison, WI.
Loomis, W.D., and R.W. Durst. 1992. Chemistry and biology of boron. BioFactors. 3: 229-239.
Mandal, B., T.K. Adhikari, and D.K. De. 1993. Effect of lime and organic matter application on the availability of added boron in acidic alluvial soils. Commun. Soil Sci. Plant Anal. 24:1925-1935.

Marzadori, C., L. Vittori Antisari, C. Ciavatta, and P. Sequi. 1991. Soil organic matter influence on adsorption and desorption of boron. Soil Sci. Soc. Am. J. 55:1582-1585.
Matsi, T. and V.Z. Keramidas. 2001. Alkaline fly ash effects on boron sorption and desorption in soils. Soil Sci. Soc. Am. J. 65:1101-1108.
McPhail, M., A.L. Page, and F.T. Bingham. 1972. Adsorption interactions of monosilicic and boric acid on hydrous oxides of iron and aluminum. Soil Soc. Sci. Am. Proc. 36:510-514.
Mehra, O.P., and M.L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. p317-327. In Clays and clay minerals. Proc. 7th Natl. Congr. Pergamon, Lodon.
Meyer, M. L., and P.R. Bloom. 1997. Boric and silicic acid adsorption and desorption by a humic acid. J. Eviron. Qual. 26:63-69.
Mezuman, U., and R. Keren. 1981. Boron adsorption by soils using a phenomenological adsorption equation. Soil Sci. Soc. Am. J. 45:722-726.
Moore, T.R., W. Desouza, and J.F. Koprivnjak. 1992. Controls on the sorption of dissolved organic carbon by soils. Soil Sci. 154:120-129.
Neff, J.C., and G.P. Asner. 2001. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model. Ecosystems 4:29-48.
Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p539-579. In A.L. Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Okazaki, E., and T.T. Chao. 1968. Boron adsorption and desorption by some Hawaiian soils. Soil Sci. 105:255-259.
Olson, R.V., and K.C. Berger. 1946. Boron fixation as influenced by pH, organic matter content, and other factors. Soil Sci. Soc. Am. Proc. 11:216-220.
O’Neill, M.A., T. Ishii, P. Albersheim, and A.G. Darvill. 2004. Rhamnogalacturonan II: Structure rand function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 55:109-139.

Owen, B.B., and E.J. King. 1943. The effect of sodium chloride upon the ionization of boric acid at various temperatures. J. Am. Chem. Soc. 65:1612-1620.
Parker, D.R., and E.H. Gardner. 1982. Factors affecting the mobility and plant availability of boron in some western Oregon soils. Soil Sci. Soc. Am. J. 46:573-578.
Parks, W.L., and J.L. White. 1952. Boron retention by clay and humus systems saturated with various cations. Soil Sci. Soc. Am. Proc. 16:298-300.
Parks, W.L., and M. Fireman. 1960. Boron adsorption and release by soils. Soil Sci. Soc. Am. Proc. 16:298–300.
Peak, D., G.W. Luther, and D.L. Sparks. 2003. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim. Cosmochim. Acta. 67:2551-2560.
Peterson, L.A., and Newman, R.C. 1976. Influence of soil pH on the availability of added boron. Soil Sci. Soc. Am. J. 40:280-282.
Reisenauer, H.M., L.M. Walsh, and R.G. Hoeft. 1973. Testing soils for sulphur, boron, molybdenum, and chlorine. p173-200. In Walsh, L.M. and J.D. Beaton (eds.) Soil testing and plant analysis (revised edition). Soil Sci. Soc. Am., Inc. Madison, WI.
Rhoades, J.D., R.D. Ingralson, and J.T. Hatcher. 1970. Adsorption of boron by ferromagnesium minerals and magnesium hydroxide. Soil Sci. Soc. Am. Proc. 34:934-941.
Schollenberger, C.J., and R.H. Simon. 1945. Determination of exchange capacity and exchangeable bases in soil- ammonium acetate method. Soil Sci. 59:13-24.
Shafiq, M., A.M. Ranjha, M. Yaseen, S.M. Mehdi, and A. Hannan. 2008. Comparison of freundlich and Langmuir adsorption equations for boron adsorption on calcareous soils. J. Agric. Res. 46:141-148.
Sharma, K.R., P.C. Srivastava, P. Srivastava, and V.P. Singh. 2006. Effect of farmyard manure application on boron adsorption-desorption characteristics of some soils. Chemosphere 65:769-777.
Sims, J.R., and F.T. Bingham. 1967. Retention of boron by layer silicates, sesquioxides, and soil materials: I. Layer silicates. Soil Sci. Soc. Am. Proc. 31:728-732.

Sims, J.R., and F.T. Bingham. 1968a. Retention of boron by layer silicates, sesquioxides, and soil materials: II. Sesquioxides. Soil Sci. Soc. Am. Proc. 32:364-369.
Sims, J.R., and F.T. Bingham. 1968b. Retention of boron by layer silicates, sesquioxides, and soil materials: III. Iron- and aluminum-coated layer silicates and soil materials. Soil Sci. Soc. Am. Proc. 32:369-373.
Singh, P.N., and S.V. Mattigod. 1992. Modeling boron adsorption on kaolinite. Clays Clay Miner. 40:192-205.
Soil Survey Staff. 2006. Keys to Soil Taxonomy. 10th edition. USDA.
Sposito, G. 1989.The chemistry of soils. Oxford Univ. Press, New York.
Su, C., and D.L. Suarez. 1995. Coordination of adsorbed boron: A FTIR spectroscopic study. Environ. Sci. Technol. 29:302-311.
Su, C., L.J. Evans, T.E. Bates, and G.A. Spiers. 1994. Extractable soil boron and alfalfa uptake: calcium carbonate effects on acid soil. Soil Sci. Soc. Am. J. 58:1445-1450.
Toner, C.V., and D.L. Sparks. 1995. Chemical relaxation and double layer model analysis of boron adsorption on alumina. Soil Sci. Soc. Am. J. 59:395-404.
Tsai, Y.F., H.C. Huang, and S.N. Huang. 1990. Studies on the amelioration of red earth in central Taiwan. Contribution No.0227 from Taichung DAIS. 29:49-60.
Vasudevan, D., E.M. Cooper, and O.L. Van Exem. 2002. Sorption-deorption of ionogenic compounds at the mineral-water interface: study of metal oxide-rich soils and pure-phase minerals. Environ. Sci. Technol. 36:501-511.
Xu, D., and D. Peak. 2007. Adsorption of boric acid on pure and humic acid coated am-Al(OH)3: a boron K-edge XANES study. Environ. Sci. Technol. 2007: 903-908.
Yermiyahu, U., R. Keren, and Y. Chen. 1988. Boron sorption on composted organic matter. Soil Sci. Soc. Am. J. 52:1309-1313.
Yermiyahu, U., R. Keren, and Y. Chen. 1995. Boron sorption by soil in the presence of composted organic matter. Soil Sci. Soc. Am. J. 59:405-409.
Yermiyahu, U., R. Keren, and Y. Chen. 2001. Effect of composted organic matter on boron uptake by plants. Soil Sci. Soc. Am. J. 65:1436-1441.

Zerrari N., D. Moustaoui, and M. Verloo. 2001. Adsorption and desorption of boron on soils and the influence of application of manure. Agrochimica 45:206–217.
Zhu, H., and H.M. Selim. 2000. Hysteretic behavior of metolachlor adsorption-desorption in soils. Soil Sci. 165:632-645.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top