跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 14:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁于婷
研究生(外文):Yu-Ting Weng
論文名稱:大腸桿菌熱休克蛋白酶ClpYQ之基質SulA被辨識區域特性之研究
論文名稱(外文):The recognition region in SulA by ClpYQ protease from Escherichia coli
指導教授:吳蕙芬
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:ATP依賴蛋白酶ClpYQLonSulA蛋白質辨識
外文關鍵詞:ATP-dependent proteaseClpYQLonSulAProtein recognition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸桿菌中ClpYQ蛋白酶為一種ATP依賴蛋白酶,由具有ATPase及unfoldase活性的ClpY,與具有peptidase活性的ClpQ所構成的雙單元體。這類蛋白酶在細胞中,可降解構形錯誤或是具危害性的蛋白質,以維持細胞正常生理作用,避免細胞受到危害。在ClpYQ蛋白酶中,ClpY會負責辨識基質,並水解ATP作為能量來源,將基質結構打開並傳送至ClpQ的活性區,以進行降解作用。然而,關於ClpYQ蛋白酶是如何選擇辨識基質,及後續降解作用的詳細機制,目前仍不清楚。SulA是一個細胞分裂的抑制物,當細胞暴露在逆境下時會產生SOS反應,誘導大量SulA蛋白表現,以避免受損的DNA傳到子代細胞。目前已知可分解SulA的蛋白酶為Lon及ClpYQ,其中又以Lon為主要負責分解的蛋白酶。之前有研究指出,Lon可以藉由辨認SulA之C-端末8個胺基酸,與之結合並將其降解,但是ClpYQ卻不能。對於ATP依賴蛋白酶來說,為避免不必要的降解,如何選擇辨認需要降解的基質是非常重要的。本實驗中,為確認ClpYQ蛋白酶辨認SulA蛋白的區域,建構SulA之C-端不同大小片段缺失的突變蛋白,以酵母菌雙雜交系統測試,各個SulA突變蛋白與ClpY之間交互作用的情形,發現ClpY辨識的區域可能位於C-端的高疏水性片段,C-端第20 - 30個胺基酸。於此區域內再建構點突變蛋白,分析不同性質的胺基酸對於ClpY交互作用的影響,結果顯示當點突變取代為親水性胺基酸時,會降低SulA蛋白與ClpY之間的交互作用。之後測試各個SulA突變蛋白的活性表現,及被ClpYQ蛋白酶降解之情形,結果顯示SulA之C-端第20 - 45個胺基酸的區域,對於其抑制細胞分裂的活性表現是重要的,且對於ClpYQ蛋白酶的降解作用也會造成影響,因此ClpYQ蛋白酶應可藉由SulA蛋白之活性表現與否,來辨別其是否需要降解。
ClpYQ is an ATP-dependent protease from Escherichia coli and a two component complex composed of ClpY, which is an ATPase and unfoldase, and ClpQ peptidase. Degradation of denatured or damaged proteins by this proteases helps protect the normal cell growth from the harmful effects of these proteins. The ClpY is thought to recognize protein substrates, denature them, and translocate the unfolded polypeptide into the catalytic cavity of the ClpQ for degradation. However, little information is available on the recognition of substrates for ClpYQ and on the mechanism by which they were selected, unfolded, and translocated by ClpY to the interior of the ClpQ. SulA, induced in the SOS response, is a cell division inhibitor and prevents the distribution of damaged DNA into daughter cells during DNA repair processes. SulA can be degraded by ATP-dependent proteases such as Lon and ClpYQ, and the degradation in vivo seems to be predominantly by Lon, while ClpYQ appears to act as a backup for Lon. It was reported previously that the region of C-terminal eight amino acid residues of SulA was essential for interaction with Lon but not with ClpYQ. To avoid unnecessary degradation of cellular proteins, substrate selection by ATP-dependent proteases is tightly regulated; therefore, it is interesting to investigate the recognition region of SulA by ClpYQ. In this study, the deletion mutants of SulA with regard to C-terminus were constructed and the interaction with ClpY was analyzed in yeast two-hybrid system. The results showed that ClpY recognized the hydrophobic region of SulA, C20 - 30 aa, and the recognition was also likely to rely on hydrophobic interaction following the observation that the binding activity decreased if the substituted residue was polar. The C-terminal region of SulA, C20 - 45 aa, seemed to be important for its activity with an inhibition of cell division, and the region is necessary for the degradation by ClpYQ. Therefore, ClpYQ protease would be able to distinguish whether SulA is to be degraded by the activity of inhibition.
目錄
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 viii
圖目錄 ix
附圖目錄 x
壹、前言 1
一、ATP依賴蛋白酶 1
二、ClpYQ蛋白酶 2
三、ClpYQ複合體結構 4
四、ClpYQ蛋白酶之基質 5
五、細胞分裂抑制物SulA 7
六、蛋白酶對基質SulA辨認之相關研究 9
七、研究動機與目的 12
貳、材料與方法 13
一、實驗材料 13
(一) 菌株與質體 13
(二) 藥品與試劑 14
(三) 器材設備 15
(四) 分析軟體 15
二、實驗方法 16
(一) 一般實驗方法 16
(二) 菌體的建構 20
(三) 突變基因建構 25
(四) 酵母菌雙雜交系統分析 28
(五) 大腸桿菌選殖基因表現系統 33
(六) 西方墨點分析 (Western Blotting) 35
參、實驗結果 41
一、確認SulA蛋白被ClpY辨識之區域 41
(一) 建構SulA蛋白C-端不同大小片段缺失之突變 41
(二) 以酵母菌雙雜交系統測試各個SulA突變蛋白與ClpY之交互作用 41
二、SulA蛋白被辨識區域之特性 43
(一) SulA蛋白C-端序列特性分析 43
(二) 於SulA蛋白被辨識區域中建構不同胺基酸性質之點突變 43
(三) 利用酵母菌雙雜交系統測試SulA點突變蛋白與ClpY之交互作用 44
三、不同蛋白酶對於SulA蛋白辨識區域之差異 45
(一) Lon蛋白酶與SulA缺失突變蛋白間之交互作用 45
(二) ClpY I domain上兩個loop對於SulA蛋白辨識之影響 46
四、SulA突變蛋白之活性表現及受ClpYQ蛋白酶降解之現象 47
(一) C-端末20個胺基酸缺失之SulA突變蛋白 48
(二) C-端二級結構部份缺失之SulA突變蛋白 50
(三) SulA不同性質胺基酸之點突變蛋白 51
肆、討論 53
一、SulA蛋白被ClpY辨識之區域及其特性 53
二、不同蛋白酶對於辨認相同基質之差異 54
三、SulA突變蛋白之活性表現與FtsZ的相關性 55
四、ClpYQ蛋白酶對於SulA突變蛋白之降解情形 57
五、質體SulA的表現會誘導染色體之SulA表現 58
伍、結論 60
陸、參考文獻 61

表目錄

表一、本論文所使用的菌株與噬菌體 67
表二、本論文所使用的質體 68
表三、本論文所使用的引子對 69
表四、在酵母菌雙雜交系統中SulA突變蛋白與ClpY之交互作用情形 71
表五、SulA突變蛋白之活性測試及受ClpYQ蛋白酶降解之情形 72

圖目錄

圖一、大腸桿菌之SulA結構圖 73
圖二、以酵母菌雙雜交系統分析SulA
Bi, E. & J. Lutkenhaus, (1990) Analysis of ftsZ mutations that confer resistance to the cell division inhibitor SulA (sfiA). J. Bacteriol. 172: 5602-5609.
Bi, E. F. & J. Lutkenhaus, (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354: 161-164.
Bochtler, M., L. Ditzel, M. Groll & R. Huber, (1997) Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. USA 94: 6070-6074.
Bochtler, M., C. Hartmann, H. K. Song, G. P. Bourenkov, H. D. Bartunik & R. Huber, (2000) The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403: 800-805.
Bukau, B., J. Weissman & A. Horwich, (2006) Molecular chaperones and protein quality control. Cell 125: 443-451.
Cherepanov, P. P. & W. Wackernagel, (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9-14.
Chuang, S. E., V. Burland, G. Plunkett, 3rd, D. L. Daniels & F. R. Blattner, (1993) Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134: 1-6.
Cole, S. T. & N. Honore, (1989) Transcription of the sulA-ompA region of Escherichia coli during the SOS response and the role of an antisense RNA molecule. Mol. Microbiol. 3: 715-722.
Cordell, S. C., E. J. Robinson & J. Lowe, (2003) Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc. Natl. Acad. Sci. USA 100: 7889-7894.
Datsenko, K. A. & B. L. Wanner, (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645.
Ebina, Y., Y. Takahara, F. Kishi, A. Nakazawa & R. Brent, (1983) LexA protein is a repressor of the colicin E1 gene. J. Biol. Chem. 258: 13258-13261.
Fernandez De Henestrosa, A. R., T. Ogi, S. Aoyagi, D. Chafin, J. J. Hayes, H. Ohmori & R. Woodgate, (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol. Microbiol. 35: 1560-1572.
Fields, S. & O. Song, (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 245-246.
Freudl, R., G. Braun, N. Honore & S. T. Cole, (1987) Evolution of the enterobacterial sulA gene: a component of the SOS system encoding an inhibitor of cell division. Gene 52: 31-40.
Frost, L. S., K. Ippen-Ihler & R. A. Skurray, (1994) Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol. Rev. 58: 162-210.
Gimeno, R. E., P. Espenshade & C. A. Kaiser, (1995) SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. J. Cell Biol. 131: 325-338.
Goldberg, A. L., (1992) The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203: 9-23.
Gottesman, S., (1996) Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30: 465-506.
Gottesman, S., (2003) Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19: 565-587.
Gottesman, S., W. P. Clark, V. d. Crecy-Lagard & M. R. Maurizi, (1993) ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. J. Biol. Chem. 268: 22618-22626.
Gottesman, S., E. Halpern & P. Trisler, (1981) Role of sulA and sulB in Filamentation by Lon Mutants of Escherichia coli K-12. J. Bacteriol. 148: 265-273.
Gottesman, S. & M. R. Maurizi, (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev. 56: 592-621.
Gottesman, S., E. Roche, Y. N. Zhou & R. T. Sauer, (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12: 1338-1347.
Gottesman, S., P. Trisler & A. S. Torres-Cabassa, (1985) Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol. 162: 1111-1119.
Guo, F., M. R. Maurizi, L. Esser & D. Xia, (2002) Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277: 46743-46752.
Gur, E. & R. T. Sauer, (2008) Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev. 22: 2267-2277.
Guzman, L. M., D. Belin, M. J. Carson & J. Beckwith, (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121-4130.
Gyuris, J., E. Golemis, H. Chertkov & R. Brent, (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75: 791-803.
Hashimoto-Gotoh, T., M. Yamaguchi, K. Yasojima, A. Tsujimura, Y. Wakabayashi & Y. Watanabe, (2000) A set of temperature sensitive-replication/-segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). Gene 241: 185-191.
Herman, C., D. Thevenet, P. Bouloc, G. C. Walker & R. D''Ari, (1998) Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12: 1348-1355.
Higashitani, A., N. Higashitani & K. Horiuchi, (1995) A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. Biochem. Biophys. Res.Commun. 209: 198-204.
Higashitani, A., Y. Ishii, Y. Kato & K. Horiuchi, (1997) Functional dissection of a cell-division inhibitor, SulA, of Escherichia coli and its negative regulation by Lon. Mol. Gen. Genet. 254: 351-357.
Huang, J., C. Cao & J. Lutkenhaus, (1996) Interaction between FtsZ and inhibitors of cell division. J. Bacteriol. 178: 5080-5085.
Huisman, O. & R. D''Ari, (1981) An inducible DNA replication-cell division coupling mechanism in E. coli. Nature 290: 797-799.
Ishii, Y. & F. Amano, (2001) Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem. J. 358: 473-480.
Ishii, Y., S. Sonezaki, Y. Iwasaki, Y. Miyata, K. Akita, Y. Kato & F. Amano, (2000) Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli. J. Biochem. 127: 837-844.
Kanemori, M., K. Nishihara, H. Yanagi & T. Yura, (1997) Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of s32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179: 7219-7225.
Kanemori, M., H. Yanagi & T. Yura, (1999a) The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J. Bacteriol. 181: 3674-3680.
Kanemori, M., H. Yanagi & T. Yura, (1999b) Marked instability of the s32 heat shock transcription factor at high temperature. J. Biol. Chem. 274: 22002-22007.
Katayama-Fujimura, Y., S. Gottesman & M. R. Maurizi, (1987) A multiple-component, ATP-dependent protease from Escherichia coli. J. Biol. Chem. 262: 4477-4485.
Kessel, M., W. F. Wu, S. Gottesman, E. Kocsis, A. C. Steven & M. R. Maurizi, (1996) Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett. 398: 274-278.
Khattar, M. M., (1997) Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. FEBS Lett. 414: 402-404.
Kuo, M. S., K. P. Chen & W. F. Wu, (2004) Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology 150: 437-446.
Kwon, A. R., C. B. Trame & D. B. McKay, (2004) Kinetics of protein substrate degradation by HslUV. J. Struct. Biol. 146: 141-147.
Lau-Wong, I. C., T. Locke, M. J. Ellison, T. L. Raivio & L. S. Frost, (2008) Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli. Mol. Microbiol. 67: 516-527.
Lee, Y. Y., C. F. Chang, C. L. Kuo, M. C. Chen, C. H. Yu, P. I. Lin & W. F. Wu, (2003) Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J. Bacteriol. 185: 2393-2401.
Lien, H. Y., R. S. Shy, S. S. Peng, Y. L. Wu, Y. T. Weng, H. H. Chen, P. C. Su, W. F. Ng, Y. C. Chen, P. I. Chang & W. F. Wu, (2009) Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in ClpYQ (HslUV) protease by the yeast two-hybrid system. J. Bacteriol. 191: 4218-4231.
Lupas, A. N. & J. Martin, (2002) AAA proteins. Curr. Opin. Struct. Biol. 12: 746-753.
Ma, J. & M. Ptashne, (1987) A new class of yeast transcriptional activators. Cell 51: 113-119.
Matouschek, A., (2003) Protein unfolding--an important process in vivo? Curr. Opin. Struct. Biol. 13: 98-109.
Missiakas, D., F. Schwager, J. M. Betton, C. Georgopoulos & S. Raina, (1996) Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 15: 6899-6909.
Mizusawa, S. & S. Gottesman, (1983) Protein degradation in Escherichia coli: the lon gene control the stablilty of the SulA protein. Proc. Natl. Acad. Sci. USA 80: 358-362.
Mukherjee, A., C. Cao & J. Lutkenhaus, (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc. Natl. Acad. Sci. USA 95: 2885-2890.
Neuwald, A. F., L. Aravind, J. L. Spouge & E. V. Koonin, (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9: 27-43.
Nishii, W., T. Maruyama, R. Matsuoka, T. Muramatsu & K. Takahashi, (2002) The unique sites in SulA protein preferentially cleaved by ATP-dependent Lon protease from Escherichia coli. Eur. J. Biochem. 269: 451-457.
Nishii, W. & K. Takahashi, (2003) Determination of the cleavage sites in SulA, a cell division inhibitor, by the ATP-dependent HslVU protease from Escherichia coli. FEBS Lett. 553: 351-354.
Ramachandran, R., C. Hartmann, H. K. Song, R. Huber & M. Bochtler, (2002) Functional interactions of HslV (ClpQ) with the ATPase HslU (ClpY). Proc. Natl. Acad. Sci. USA 99: 7396-7401.
Rohrwild, M., O. Coux, H. C. Huang, R. P. Moerschell, S. J. Yoo, J. H. Seol, C. H. Chung & A. L. Goldberg, (1996) HslV-HslU: A novel ATP-dependent protease complex in Escherichia coli related to the eukaryotic proteasome. Proc. Natl. Acad. Sci. USA 93: 5808-5813.
Rohrwild, M., G. Pfeifer, U. Santarius, S. A. Muller, H. C. Huang, A. Engel, W. Baumeister & A. L. Goldberg, (1997) The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat. Struct. Biol. 4: 133-139.
Sambrook, J., E. F. Fritsch, and T. Maniatis, (1989) Preparation and transformation of competent E. coli. In: Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Habor Labtoratory Press., pp. 1.74-71.84.
Sauer, R. T., D. N. Bolon, B. M. Burton, R. E. Burton, J. M. Flynn, R. A. Grant, G. L. Hersch, S. A. Joshi, J. A. Kenniston, I. Levchenko, S. B. Neher, E. S. Oakes, S. M. Siddiqui, D. A. Wah & T. A. Baker, (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119: 9-18.
Schirmer, E. C., J. R. Glover, M. A. Singer & S. Lindquist, (1996) HSP100/Clp proteins: A common mechanism explains diverse functions. Trends Biochem. Sci. 21: 289-296.
Schoemaker, J. M., R. C. Gayda & A. Markovitz, (1984) Regulation of cell division in Escherichia coli: SOS induction and cellular location of the SulA protein, a key to lon-associated filamentation and death. J. Bacteriol. 158: 551-561.
Seong, I. S., M. S. Kang, M. K. Choi, J. W. Lee, O. J. Koh, J. Wang, S. H. Eom & C. H. Chung, (2002) The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J. Biol. Chem. 277: 25976-25982.
Seong, I. S., J. Y. Oh, S. J. Yoo, J. H. Seol & C. H. Chung, (1999) ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett. 456: 211-214.
Shin, D. H., S. J. Yoo, Y. K. Shim, J. H. Seol, M. S. Kang & C. H. Chung, (1996) Mutational analysis of the ATP-binding site in HslU, the ATPase component of HslVU protease in Escherichia coli. FEBS Lett. 398: 151-154.
Stout, V., A. Torres-Cabassa, M. R. Maurizi, D. Gutnick & S. Gottesman, (1991) RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. 173: 1738-1747.
Torres-Cabassa, A. & S. Gottesman, (1987) Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J. Bacteriol. 169: 981-989.
Uzzau, S., N. Figueroa-Bossi, S. Rubino & L. Bossi, (2001) Epitope tagging of chromosomal genes in Salmonella. Proc. Natl. Acad. Sci. USA 98: 15264-15269.
Walker, G. C., (1996) The SOS response of Escherichia coli. In: Escherichia coli and Salmonella typhimurium. Washington, D.C.: American Society for Microbiology, pp. 1400-1416.
Wang, J., J. A. Hartling & J. M. Flanagan, (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91: 447-456.
Wang, J., J. J. Song, M. C. Franklin, S. Kamtekar, Y. J. Im, S. H. Rho, I. S. Seong, C. S. Lee, C. H. Chung & S. H. Eom, (2001a) Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9: 177-184.
Wang, J., J. J. Song, I. S. Seong, M. C. Franklin, S. Kamtekar, S. H. Eom & C. H. Chung, (2001b) Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9: 1107-1116.
Wickner, S., M. R. Maurizi & S. Gottesman, (1999) Posttranslational quality control: Folding, refolding, and degrading proteins. Science 286: 1888-1893.
Wu, W. F., Y. N. Zhou & S. Gottesman, (1999) Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) Protease. J. Bacteriol. 181: 3681-3687.
Yoo, S. J., J. H. Seol, M. S. Kang & C. H. Chung, (1996) Poly-L-lysine activates both peptide and ATP hydrolysis by the ATP-dependent HslVU protease in Escherichia coli. Biochem. Biophys. Res.Commun. 229: 531-535.
Yura, T., H. Nagai & H. Mori, (1993) Regulation of the heat shock response in bacteria. Annu. Rev. Microbiol. 47: 321-350.
Zhang, X., F. Beuron & P. S. Freemont, (2002) Machinery of protein folding and unfolding. Curr. Opin. Struct. Biol. 12: 231-238.
Zolkiewski, M., (2006) A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol. Microbiol. 61: 1094-1100.
Zwickl, P., W. Baumeister & A. Steven, (2000) Dis-assembly lines: the proteasome and related ATPase-assisted proteases. Curr. Opin. Struct. Biol. 10: 242-250.
施如珊, (2004) 大腸桿菌熱休克蛋白ClpY I domain 之突變蛋白及其專一性基質辨識之研究. 台灣大學農業化學研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊