跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 03:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳韋靜
研究生(外文):Wei-Ching Wu
論文名稱:利用白蟻腸內共生菌Clostridiumxylanolyticum分解木質纖維素
論文名稱(外文):Degradation of the Lignocellulose by Using Clostridium xylanolyticum, a Symbiotic Bacterium in the Termite Gut
指導教授:周楚洋
指導教授(外文):Chu-Yang Chou
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:50
中文關鍵詞:Clostridium xylanolyticum木聚醣麻竹
外文關鍵詞:Clostridium xylanolyticumxylanMa Bamboo
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1495
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白蟻腸道內的共生微生物能協助分解木質纖維素,使纖維素和半纖維素降解生成短鏈醣類,本研究利用白蟻腸道細菌Clostridium xylanolyticum進行木質纖維素的分解,首先經剛果紅染色法確認其具有分解羧甲基纖維素鈉與木聚醣的能力,將其培養於Modified PYG medium中可獲得甲酸鹽、醋酸鹽與酒精三種主要醱酵產物,其中醋酸鹽的累積會造成pH值下降,當環境的pH值低於5.0時有明顯的生長抑制現象。建立此菌株的生長曲線後發現0-12小時為遲滯期,12-30小時為對數生長期,30小時以後為靜止期,菌株的生代時間為2.4小時,最佳的接種時機於24-30小時之間。
使用葡萄糖、纖維雙糖、羧甲基纖維素鈉、微晶纖維素Avicel®、木糖與木聚醣進行基質測試,藉此評估菌株分解各種纖維素與半纖維素的能力,結果顯示其對於木聚醣的分解具有較大的優勢,因此選用木聚醣基質進行菌種馴化以提升菌種的分解能力。在菌種馴化的過程中,菌株的木聚醣的分解能力與酸耐受度逐漸提升,在後續基質醱酵的實驗中採用第一次繼代培養後的菌種,因其已具備相當優秀的木聚醣分解能力並能在接種後一天內快速進行醱酵反應。
基質醱酵實驗利用一年生麻竹為天然基質,並在培養過程中進行pH值控制,在培養期的前24小時,菌體迅速消耗醣類基質並產出大量的酸醇產物、氫氣及二氧化碳,麻竹基質中大部分的半纖維素被菌體分解利用殆盡,最後共產出醋酸鹽4.85 g/L、酒精0.14 g/L、氫氣99.3 mL與二氧化碳179.6 mL,其中醋酸鹽可作為厭氧醱酵生產甲烷的基質,氫氣為氣態燃料,酒精則可作為液態燃料使用。
It was found that the symbiotic microorganisms in termite gut can digest lignocellulose, i.e., to degrade the cellulose and hemicellulose into short-chain oligosaccharides. In this study, Clostridium xylanolyticum, a symbiotic bacterium in termite gut has been used to degrade the lignocellulose. At the beginning, Congo red dye assay was applied to identify its capability in degradation of sodium carboxymethyl cellulose (CMC-Na) and xylan, and then cultivated with the modified peptone–yeast extract-glucose (PYG) medium. The major fermentation products are formate, acetate and ethanol. The accumulation of acetate will result in the decrease of pH, and a significant antiproliferative effect will occur when the ambient pH is lower than 5.0. The growth curve for this particular bacterium showed a 12 hrs lag phase, an 18 hrs exponential growth phase, and followed consequently the stationary phase. The mean generation time was found to be 2.4 hrs, and the optimal inoculation time was between 24-30 hrs.
To evaluate its degradation ability about the cellulose and hemicellulose, experiments using different substrates such as glucose, cellobiose, sodium carboxymethyl cellulose, microcrystalline cellulose Avicel® PH-101, xylose, and xylan were conducted. The results showed Clostridium xylanolyticum had preference in degradation of xylan. Therefore, xylan was then selected as the substrate for acclimation of the inoculum. During acclimation, the ability of xylan degradation and acid resistance were significantly improved. In follow-up substrate fermentation experiment, the first subculture was used as the inoculum for its superiority in xylan degradation and could be reacted rapidly after one day of inoculation.
In fermentation experiment of the annual Ma Bamboo, its sugar content was rapidly consumed at beginning 24 hrs, and large amount of acids, alcohol, hydrogen and carbon dioxide were produced with pH under control. Most hemicellulose in Ma Bamboo were almost completely used in this experiment, and 4.85 g/L of acetate, 0.14 g/L of alcohol, 99.3 mL of hydrogen and 179.6 mL of carbon dioxide were produced. Among these products, the acetate can be used as the substrate for methane fermentation, while hydrogen and alcohol can be used as the gaseous and liquid fuel, respectively.
口試委員會審定書
誌謝………………………………………………………i
中文摘要…………………………………………………ii
英文摘要…………………………………………………iii
目錄………………………………………………………v
圖目錄……………………………………………………vii
表目錄……………………………………………………viii
第一章 前言與研究目的…………………………………1
第二章 文獻探討…………………………………………2
2.1白蟻簡介………………………………………………2
2.2白蟻的腸道……………………………………………3
2.2.1纖維酵素的來源……………………………………3
2.2.2腸道內共生微生物…………………………………4
2.2.3腸道環境與微生物的分布…………………………6
2.3木質纖維素……………………………………………10
第三章 材料與方法………………………………………12
3.1實驗流程………………………………………………12
3.2實驗材料與設備………………………………………13
3.2.1菌種…………………………………………………13
3.2.2培養基………………………………………………14
3.2.3基質…………………………………………………15
3.2.4反應槽………………………………………………15
3.3實驗設計………………………………………………18
3.3.1菌種特性測試………………………………………18
3.3.2醱酵試驗……………………………………………19
3.4分析方法………………………………………………21
3.4.1原料成分分析………………………………………21
3.4.2菌數測定……………………………………………24
3.4.3醱酵產物分析………………………………………24
3.4.4還原糖濃度測定……………………………………25
3.4.5總糖濃度測定………………………………………26
3.4.6氣體成分分析………………………………………27
第四章 結果與討論………………………………………28
4.1菌種特性測試…………………………………………28
4.1.1菌株活化……………………………………………28
4.1.2纖維分解能力測試…………………………………29
4.1.3生長曲線之建立……………………………………30
4.1.4基質測試……………………………………………32
4.2醱酵試驗………………………………………………34
4.2.1菌種馴化……………………………………………34
4.2.2基質醱酵……………………………………………38
4.2.2.1人工基質醱酵測試………………………………38
4.2.2.2天然基質(麻竹)醱酵測試………………………42
第五章 結論與建議………………………………………45
5.1結論……………………………………………………45
5.2建議……………………………………………………45
參考文獻…………………………………………………48
1.朱冠穎。2007。白蟻腸道細菌Clostridium xylanolyticum Ter3之分離及其糖化纖維素與產氫活性分析。碩士論文。台中:國立中興大學生命科學系。
2.吳春利。1994。畜牧學實習(飼料分析)。初版。35-39。台北:合記。
3.李國鏞。1992。普通微生物學。初版。371-375。台北:九州。
4.李珺、張貞華、李桃生。1999。低等白蟻腸道內原生動物的分布及其進化學意義。白蟻科技 16(2): 1-7。
5.李珺、張貞華、李桃生。2000。世界最小生物反應器─白蟻腸道。白蟻科技 17(1): 1-5。
6.陳虹、梅建鳳、閔航。2005。白蟻腸道微生物。微生物學雜誌 25(2): 75-79。
7.楊天賜、莫建初、程家安。2006a。白蟻消化纖維素機理研究進展。林業科學 42(1): 110-115。
8.楊紅、彭建新、劉凱于、洪華珠。2006b。低等白蟻腸道共生微生物的多樣性及其功能。微生物學報 46(3): 496-499。
9.蔡淳淳、陳錦生。2000。第十四章:白蟻之生態與防治。出自〝居家害蟲生態與防治技術〞,197-218。李學進、王俊雄主編。台中:國立中興大學農業推廣中心。
10.譚仁祥。2002。植物成分分析。初版。534-539。北京:科學出版社。
11.AOAC official methods of analysis, 14th ed. 1984. 7.074-7.077: Fiber (acid detergent) and lignin in animal feed. Washington, DC: AOAC.
12.Bidlack, J., M. Malone, and R. Benson. 1992. Molecular structure and component integration of secondary cell walls in plants. Proc. Okla. Acad. Sci. 72: 51-56.
13.Breznak, J. A., and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487.
14.Brune, A. 1998. Termite guts: the world''s smallest bioreactors. Trends Biotechnol. 16: 16-21.
15.Brune, A. and M. Friedrich. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3(3): 263-269.
16.Chaplin, M. F., and J. F. Kennedy. 1986. Carbohydrate analysis: a practical approach. 1st ed., 2-3. Washington, DC: Oxford.
17.Department of Human Services. 2004. Pest Control Technical Note No. 7 – Termites. Victoria, AU: Department of Human Services. Available at: www.health.vic.gov.au. Accessed 18 March, 2008.
18.Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3): 350-356.
19.Ehrman, T. 1994. Standard method for determination of total solids in biomass. Laboratory Analytical Procedure-001. Golden, CO: National Renewable Energy Laboratory.
20.Hethener, P., A. Brauman, and J. L. Garcia. 1992. Clostridium termitidis sp. nov., a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. Sys. Appl. Microbiol. 15: 52–58.
21.Kudo, T., M. Ohkuma, S. Moriya, S. Noda, and K. Ohtoko. 1998. Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2: 155-161.
22.Lynd, L. R., P. J. Weimer, W. H. van Zyl and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66(3): 506-577.
23.Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3): 426-428.
24.Ramachandran, U., N. Wrana, N. Cicek, R. Sparling, and D. B. Levin. 2008. Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112 in batch fermentation cultures with cellobiose or α-cellulose. Int. J. Hydrogen Energy 33(23): 7006-7012.
25.Rogers, G. M. and A. A. W. Baecker. 1991. Clostridium xylanolyticum sp. nov., an anaerobic xylanolytic bacterium from decayed Pinus patula wood chips. Int. J. Syst. Bacteriol. 41(1): 140-143.
26.Rogers, G. M., S. A. Jackson, G. D. Shelver, and A. A. W. Baecker. 1992. Anaerobic degradation of lignocellulosic substrates by a 1,4-β-xylanolytic Clostridium species novum. Int. Biodeterior. Biodegradation 29(1): 3-17.
27.Teather, R. M. and P. J. Wood. 1982. Use of Congo Red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43(4): 777-780.
28.Van Soest, P. J., and R. H. Wine. 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 50: 50-55.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top