跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉瑩
研究生(外文):Chia-Ying Chen
論文名稱:採用標記後重複觀察之資料以估計黑面琵鷺之存活率暨推估族群數量
論文名稱(外文):Estimates of Survival Rates and Resighting probabilities andPredictions of the Future Population by Using Banded-Resighting Data ofthe Black-Faced Spoonbill
指導教授:彭雲明彭雲明引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:68
中文關鍵詞:捕捉再看存活再看黑面琵鷺模式選擇族群數量
外文關鍵詞:capture-recapturesurvivalresightingblack-faced spoonbillpopulation sizemodel selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:539
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
生物族群的動態可以利用該物種之生活史參數來研究。
事實上,
因為動物的標記試驗無法長時間密集地監控,
故個體的正確死亡時間和地點通常無法得知。
因此, 可透過捕捉再看的統計模式來估計動物的存活率和有關的參數。
本論文提供詳盡的模式方法介紹,
且實際分析野外收集之數據並作解釋。
文章中分析黑面琵鷺 11 年的標記再看資料,
此鳥種的背景知識在內文中的第二章有概要性的介紹。

在第三章中, 我們先將完整資料分成三個群別(幼鳥/健康, 成鳥/健康, 成鳥/復原),
之後採用開放族群之 Cormack-Jolly-Seber 模式進行分析。
此方法是從個體在第一次被捕捉的條件下,
估計其物種的存活率和再看機率,
文中的計算步驟均以 MARK 分析軟體執行。
最後, 我們解釋;討論三群別的參數估計值。

在第四章中, 我們詳細地描述如何改善模式中過多參數的問題。
利用 likelihood-ratio test 及 Akaike''s Information Criterion
來選擇最佳的簡約模式。
在黑面琵鷺的例子中,
最佳的模式僅可由一個存活率, 0.8568(95%CI: 0.7287-0.9302),
和一個再看機率, 0.9333(0.7851-0.9817),來描述。
接下來,
我們在模式中加入限制條件的方法,
以估算參數受生理或環境因素的影響(年齡或感染肉毒桿菌)。
當個體遭受疾病感染時,
其存活率約下降百分之40。
此外,
個體的再看機率在幼鳥時期約比成鳥時期減少百分之10。

在第五章中, 我們利用前幾章所估出的存活率來建立黑面琵鷺在台灣的族群數量模式,
並預測其未來的族群趨勢。
在本章中,
決定性和隨機性模式都放入討論,
且進一步作模擬分析。
由模式分析結果,
當時間來到 2015年時,
黑面琵鷺在台灣的數量(+-SD)將成長到 2360 +- 275
(今日其在台灣的數量為1104)。
在維持現今的條件下,
黑面琵鷺將不會有滅亡的危機。
但當其數量成長兩倍時,
活動空間和食物將是需要關心的議題。
The understanding of the dynamics of animal populations and of related ecological
and evolutionary issue frequently depends on analyses of individuals'' life history parameters.
Because marked individuals cannot be followed closely through time,
the exact time of death is most often unknown.
Thus, the analysis of survival studies and experiments must be based on capture-recapture(or resighting) models.
This article presents a detailed, practical example on the design, analysis,
and interpretation of capture-recapture studies.
The marked-resighting data set on the black-faced spoonbill is given to illustrate the theory,
and its lifestyle of backgrounds is covered in detail in Chapter 2.

In Chapter 3 we consider time-dependent Cormack-Jolly-Seber open population models with groups of animals,
which are central to the article.
This approach is conditioning on first capture;
hence it dose not attempt to model the initial capture of unmarked animals as functions of
population abundance in addition to survival and resighting probabilities
which were developed and estimated using MARK.
The fluctuations of estimates in three groups of birds (juvenile/health, adult/health and adult/recovery) are compared.

In Chapter 4 we give a detailed description and demonstration of model selection.
Goodness of fit, likelihood-ratio test and Akaike''s Information Criterion are introduced
for the selection of more parsimonious models.
The best model to describe the data of BFS is one single survival rate, 0.8568(95%CI: 0.7287-0.9302),
and one single resighting probability, 0.9333(0.7851-0.9817).
Next, we examine the effects of physical situation or environmental event(outbreak of botulism or age) by adding constraints in the models.
Suffering from diseases the survival rate of BFS drop about 40 percent.
Resighting probabilities in the earlier three years are 10 percent lower than latter years.

In Chapter 5 we apply annual population information and life history parameters estimated in previous chapters to model
and predict the population of BFS, and evaluate the time of extinction.
Deterministic and stochastic models are both considered,
and simulated results are provided.
When the time is in the year of 2015,
the number(+- SD) of BFS in Taiwan will grow up to 2360 +- 275 (today''s population in Taiwan is 1104),
and in current situation the possibility to be extinct is quite small.
However,
when the number is double,
space and food will be another big issue to be considered.
Thesis Oral Examination Committee Members Approval Sheet............ i
Acknowledgements…………………………………………………… ii
Chinese abstract ……………………………………………………….iii
English abstract ……………………………………………………….iv
1 Introduction ………………………………………………………….1
1.1 Motivation of this dissertation ……………………………………..2
1.2 Objective of this dissertation ………………………………………2
2 Background of the Black-Faced Spoonbill……………………………4
2.1 Distribution …………………………………………………………4
2.2 History of BFS studies in Taiwan…………………………………..7
2.3 Characteristics and habits …………………………………………10
2.3.1 Appearance ………………………………………………………10
2.3.2 Foraging………………………………………………………….10
2.3.3 Migration…………………………………………………………11
2.3.4 Threats……………………………………………………………12
2.3.5 Conservation …………………………………………………….12
3 Open-population Capture-Recapture Analysis……………………....13
3.1 Introduction ……………………………………………………… 13
3.2 Structure of Capture-Recapture study and Data …………………..14
3.3 Open Population Capture-Recapture Models ……………………..15
3.3.1 Notation of Conditional CJS Modeling …………………………15
3.3.2 Assumptions for the CJS model …………………………………17
3.4 Maximum Likelihood with CJS model ……………………………17
3.4.1 Deriving variance of estimates …………………………………..18
3.4.2 Reconstituting parameter values …………………………………19
3.5 The BFS example…………………………………………………...22
4 Model Selection ………………………………………………………31
4.1 Introduction …………………………………………………………31
4.2 Goodness of fit of a model ………………………………………….31
4.3 Likelihood Ratio Test(LRT) ………………………………………..32
4.3.1 Deviance ………………………………………………………….32
4.3.2 An example ………………………………………………………34
4.4 Akaike’s Information Criterion (AIC) ……………………………..36
4.4.1 AIC……………………………………………………………….36
4.4.2 AICc ………………………………………………………………37
4.4.3 QAICc ……………………………………………………………38
4.4.4 AIC Differences…………………………………………………..39
4.4.5 An example ……………………………………………………….41
4.5 Model selection for BFS data ………………………………………42
4.6 Adding constraints - the effects of disease …………………………45
5 Population of BFS ……………………………………………………50
5.1 The simple linear birth and death process ………………………….51
5.2 Deterministic model ………………………………………………..51
5.3 Stochastic model ……………………………………………………55
5.3.1 Probability of extinction ………………………………………….57
5.4 Simulated model ……………………………………………………61
6 Conclusion and Discussion …………………………………………...65
Bibliography…………………………………………………………… 67
Severinghaus, Lucia Liu and Lin, Wen-Hung (1992), 台灣鳥類資料現況, 中央研究院植物研究所刊, (11), 133–144.
Amstrup, Trent L.McDonald, Steven C. and Manly, Bryan F. J. (2005), Handbook of capture-recapture analysis, Princeton University Press.
Bailey, N.T.J. (1964), The elements of Stochastic Process with Applications to the Natural Sciences, Wiley, New York.
Burnham, D. R. Anderson G. C. White C. Brownie, K. P. and Pollock, K. H. (1987), Design and analysis of methods for fish survival experiments based on release-recapture, American Fisheries Society Monograph 5.
Burnham, Kenneth P. and Anderson, David R. (2004), Model selection and multimodel inference: A Practical information-theoretic approach, Springer, 2nd. edition.
Carothers, A. D. (1973), “The effects of unequal catchability on jolly-seber estimates”, Biometrics, 29, 79–100.
Chen, Bing-Huang and Yen, Chung-Wei (1974), 台灣森林鳥類調查年度報告,七月, p.2
Chen, Collin (2004), “Resightings of color-ringed black-faced spoonbill at the estuary of
tseng-wen river”, Wetlands Taiwan, 52, 4–19.
Cooch, G. andWhite, Gary C. (2006), Program MARK ”A gentle introduction”, 4th. edition.
Cormack, R. M. (1964), “Estimates of survival from the sightings of marked animals”,
Biometrika, 51, 429–438.
Cox, D. R. and Snell, E. J. (1989), Analysis of binary data, Chapman and Hall, NewYork,
NY, 2nd. edition.
Fisher, R. A. and Ford, E. B. (1947), “The spread of a gene in natural conditions in a colony of the moth panaxia dominula”, Heredity, 1, 143–174.
Hachisuka, M. and Udagawa, T. (1951), “Contributions to the ornithology of Formosa, part ii”, Quarterly Journal Taiwan Museum, 9, 1–180.
Hestbeck, J. D. Nichols, J. B. and Malecki, R. A. (1991), “Estimates of movement and site fidelity using mark-resight data of wintering Canada geese”, Ecology, 72, 523–533.
Hogg, Robert V. and Craig, Allen T. (1995), Introduction to mathematical statistics,
Prentice-Hall.
Hurvich, C. M. and Tsai, C-L (1989), “Regression and time series model selection in small samples”, Biometrika, 76, 297–307.
IUCN (2008), “The IUCN red list of threatened species”, URL: http://www.iucnredlist.org/.
Jackson, C. H. N. (1940), “The analysis of a tsetse fly population, i”, Annals of Eugenics,
10, 332–369.


Jolly, G. M. (1965), “Explicit estimates from capture-recapture data with both death and
immigration: stochastic model”, Biometrika, 52, 225–247.
Lebreton, Jean-Dominique, Burnham, Kenneth P., Clobert, Jean, and Anderson, David R.
(1992), “Modeling sirvival and testing biological hypotheses using marked animals: a
unified approach with case studies”, Ecological Monographs, 61, 67–118.
Pollock, K. H., Nichols, Browine C., J. D., and Hines, J. E. (1990), “Statistical inference for capture-recapture experiments”, Wildlife Monographs, 107, 1–97.
Renshaw, Eric (1991), Modelling biological populations in space and time, Wiley, New York.
Seber, G. A. F. (1965), “A note on the multiple recapture census”, Biometrika, 52, 249–259.
Seber, G.A.F. (1982), The estimation of animal abundance and related parameters, London and Macmillan, New York, 2nd. edition.
Sugiura, N (1978), “Further analysis of the data by akaike’s information criterion and finite corrections”, Communications in Statistics, Theory and Methods, 7, 13–26.
Swinhoe, Robert (1864), “Descriptions of four new species of Formosan birds; with further notes on the ornithology of the island”, Ibis, 6, 361–370.
Tai, Tzu-Yao and Wu, Shih-hung (2006), “The investigation of the night habitat and behavior for the black-faced spoonbill”, .
Ueng, Yih-Tsong, Wang, Jiang-Ping, and Hou, Ping-Chun L. (2007), “Predicting population trends of the black-faced spoonbill(Platalea minor )”, The Wilson Journal of Ornithology, 119, 246–252.
Yeung, C. K.-L, Hsu, C.-T., Wang, J.-P., and Li, S.-H. (2006), “Assessment of the historical population size of an endangered bird, the black-feaced spoonbill (Platalea minor ) by analysis of motochondrial DNA diversity”, Animal Conservation, 9, 1–10.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top