跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭彥廷
研究生(外文):Yen-Ting Kuo
論文名稱:以低溫多晶矽薄膜電晶體製程實現之全數位式鎖相迴路設計
論文名稱(外文):Design of all-digital phase-locked loop implemented in LTPS TFT process
指導教授:曹恆偉曹恆偉引用關係
指導教授(外文):Hen-Wai Tsao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:61
中文關鍵詞:低溫多晶矽薄膜電晶體全數位式鎖相迴路
外文關鍵詞:LTPS TFTall-digital phase-locked loop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用3um LTPS TFT製程設計一個全數位式鎖相迴路,用來產生倍頻的時脈,本鎖相迴路的輸出頻率範圍是0.625MHz~12MHz,倍頻範圍是1~30倍,模擬結果時間解析度粗調是5.6ns,微調是0.25ns,而量測結果粗調的時間解析度為8ns。鎖相迴路在電路的應用上是一個重要的模組,近年來發展的潮流也是朝全數位化發展。全數位化的好處是電路對製程的變異性不敏感、電路更改製程容易等。
The thesis presents an all-digital phase-locked loop (ADPLL) as a clock generator implemented in 3um LTPS TFT process. The output frequency range of the ADPLL is from 0.625MHz to 12MHz, the multiplication factors of the reference clock are 1 to 30, and the time resolution of the coarse-tuning part of the DCO is 5.6 ns and that of the fine-tuning part is 0.25ns by simulation. The measuring result of the time resolution of course-tuning part is 8ns. PLL is an essential module in many applications, and the trend of development of PLL is toward all-digital realization. The nature of digital circuits has high immunity against process deviation and it is easy for circuits to be ported among different processes.
中文摘要 I
Abstract II
圖目錄 VI
表目錄 IX

第一章 簡介 1
________________________________________________________________________________
1.1 低溫多晶矽薄膜電晶體介紹 1
1.2 全數位式鎖相迴路 2
1.3 動機 2
1.4 論文架構 3

第二章 低溫多晶矽薄膜電晶體 5
________________________________________________________________________________
2.1 低溫多晶矽薄膜電晶體介紹 5
2.2 電晶體特性曲線 6
2.3 電路設計考量 9
2.3.1 臨界電壓變異性( ) 9
2.3.2 自發熱效應(self-heating) 10

第三章 鎖相迴路介紹 11
________________________________________________________________________________
3.1 類比式鎖相迴路 11
3.2 數位控制式鎖相迴路 13
3.3 全數位式鎖相迴路 14
3.4 鎖相迴路比較 18

第四章 全數位式鎖相迴路架構 19
________________________________________________________________________________
4.1 電路架構 19
4.2 頻率及相位鎖定演算法 22
4.3 穩定度分析 23
4.4 頻率鎖定 24
4.5 相位鎖定 26
4.6 電路規格 27
4.7 行為模擬 27

第五章 電路模組設計 31
________________________________________________________________________________
5.1 數位控制震盪器 31
5.2 數位式相位頻率偵測器 36
5.3 計數器 37
5.4 正反器 38
5.5 鎖定偵測器 42
5.6 Mask 44
5.7 增益控制器 45

第六章 量測結果及閉迴路模擬 47
________________________________________________________________________________
6.1 數位控制震盪器量測結果 47
6.2 全數位式鎖相迴路模擬結果 53

第七章 結論及展望 58
_____________________________________________________________________________________
7.1 結論 58
7.2 未來展望 59

參考文獻 60
[1] 林嵩鈞,”低溫多晶矽薄膜電晶體元件電容特性之分析”,碩士論文,台灣大學電子工程學研究所,2005年7月
[2] Mark D. Jacunski, Micheal S. Shur, Albert A. Owusu, Trond Ytterdal, Michael Hack, and Benjamin Iniguez, “A Short-Channel DC SPICE Model for Polysilicon Thin-Film Transistors Including Temperature Effects”, IEEE TRANSACTIONS ON ELECTRON DEVICE, VOL. 46, NO. 6, JUNE 1999
[3] Walid Benzarti, Francois Plais, Anthony De Luca, and Didier Pribat, “Compact Analytical Physical-Based Model of LTPS TFT for Active Matrix Displays Addressing Circuits Simulation and Design”, IEEE TRANSACTIONS ON ELECTRON DEVICE, VOL. 51, NO. 3, MARCH 2004
[4] Ming-Dou Ker, Chin-Kang Deng, and Ju-Lin Huang, “On-Panel Output Buffer With Offset Compensation Technique for Data Driver in LTPS Technology”, JOURNAL OF DISPLAY TECHNOLOGY, VOL. 2, NO. 2, JUNE 2006
[5] Jung-Sheng Chen, and Ming-Dou Ker, “New Gate-Bias Voltage-Generating Technology With Threshold-Voltage Compensation for On-Glass Analog Circuits in LTPS Process”, JOURNAL OF DISPLAY TECHNOLOGY, VOL. 3, NO. 3, SEPTEMBER 2007
[6] Satoshi Inoue, Hiroyuki Ohshima, and Tatsuya Shimoda, “Analysis of Degradation Phenomenon Caused by Self-Heating in Low-Temperature-Process Polycrystalline Silicon Thin Film Transistor”, Jpn. J. Appl. Phys. vol. 41, no. 11A, pp. 6313-6319, Nov. 2002
[7] T. Fuyuki, K. Kitajima, H. Yano, T. Hatayama, Y. Uraoka, S. Hashimoto, and Y. Morita, “Thermal Degradation of Low Temperature Poly-Si TFT”, Thin Solid Films, vol. 487, no. 1/2, pp. 216-220, Sep. 2005
[7] 劉深淵,楊清淵,”鎖相迴路”,滄海書局
[8] In-Chul Hwang, Sang-Hun Song, and Soo-Won Kim, “A Digitally Controlled Phase-Locked Loop With a Digital Phase-Frequency Detector for Fast Acquisition” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 10, OCT 2001
[9] Ching-Che Chung and Chen-Yi Lee, ”An All-Digital Phase-Locked Loop for High-Speed Clock Generation ”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 2, FEBRUARY 2003
[10] Pao-Lung Chen, Ching-Che Chung, and Chen-Yi Lee, “A Portable Digitally Controlled Oscillator Using Novel Varactors”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II : EXPRESS BRIEFS, VOL. 52, NO. 5, MAY 2005
[11] Pao-Lung Chen, Ching-Che Chung, Jyh-Neng Yang, and Chen-Yi Lee, “A Clock Generator With Cascaded Dynamic Frequency Counting Loops for Wide Multiplication Range Applications”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 6, JUNE 2006
[12] R. B. Staszewski, D. Leipold, K. Muhammand, and P. T. Balsara, “Digitally controlled oscillator (DCO)-based architecture for RF frequency synthesis in a deep-submicrometer CMOS process,” IEEE Trans. Circuit Syst. II, Analog Digit. Signal Process., Vol. 50, no. 11, pp. 815-822, Nov. 2003.
[13] P. Raha, S. Randall, R. Jennings, B. Helmick, A. Amerasekera, and B. Haroun, “A robust delay line architecture in a 0.13-um CMOS technology node for reduced design and process sensitivity,” in Proc. ISQED’02, Mar. 2002, pp. 148-153.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top