跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 06:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾敏男
研究生(外文):Min-Nan Tseng
論文名稱:結合雙載子及場效電晶體的單石積體結構之成長技術研究
論文名稱(外文):Epitaxial technology for the monolithic integration of HBT and PHEMT
指導教授:林浩雄林浩雄引用關係
指導教授(外文):Hao-Hsiung Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:83
中文關鍵詞:有機金屬化學沉積法雙載子電晶體場效電晶體片電子密度電子移動率外擴散
外文關鍵詞:MOCVDHBTPHEMTBiFETelectron mobilitysheet electron densityout-diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以有機金屬化學沉積法(Metal Organic Chemical Vapor Disposition, MOCVD )成長雙載子、場效電晶體單石積體結構(BiFET)。我們所使用的BiFET結構,其下層為AlGaAs PHEMT結構,而上層為InGaP HBT結構,其中HBT的次集極層也同時用作PHEMT結構的接觸層。我們在次集極層下成長一層heavily n-doped InGaP,作為etching-stop layer,用以控制gate recess的深度位置。整個完整BiFET結構在同一次磊晶成長中完成。我們使用電容-電壓量測、van der Pauw量測、高解析度二次離子質譜術、光激螢光譜及x-ray diffraction量測分析PHEMT的特性,並發現成長HBT的thermal cycle,會造成heavily n-doped InGaP layer及donor layer中Si原子的外擴散,致使PHEMT的片電子密度(sheet electron density)增加及電子移動率(electron mobility)下降。我們在本研究中降低HBT的成長溫度,成功地減少heavily n-doped InGaP layer及donor layer中Si原子的外擴散,使得PHEMT能夠維持原有的特性,且HBT的直流特性也能維持與較高溫成長HBT時相同的特性。
We have investigated the optimal growth conditions for integrating heterojunction bipolar transistors (HBTs) and pseudomorphic high electron mobility transistors (PHEMTs) together by metal-organic chemical vapor depositon (MOCVD). In the structure of HBT and PHEMT (BiFET), AlGaAs PHEMT is at the bottom, while InGaP HBT is on the top. The HBT and PHEMT share a heavily n-doped GaAs layer that serves as the cap of the PHEMT and the subcollector of the HBT simultaneously. A heavily n-doped InGaP layer under the HBT subcollector layer is used as an etching-stop layer for controlling the deepness of the gate recess during the PHEMT process. Through the investigation using capacitance-voltage measurement, van der Pauw measurement, high resolution secondary ion mass spectrometry, and photoluminescence and x-ray diffraction measurement, we found that the thermal cycle of InGaP HBT results in the out-diffusion of Si in the heavily doped InGaP layer and donor layer, leading to the increment in the sheet electron density and the decrement in the electron mobility, both degrading the performance of the PHEMT. After lowering the growth temperature of the HBT, Si out-diffusion is inhibited, which brings about the performance recovery of the PHEMT. Though the temperature is reduced, the DC characteristics of the HBT are still as good as those of the HBT grown at high temperature.
中文版口試委員會審定書……………………………………………i
英文版本口試委員會審定書…………………………………………ii
誌謝……………………………………………………………………iii
中文摘要………………………………………………………………iv
英文摘要………………………………………………………………v
目錄……………………………………………………………………vi
附表索引………………………………………………………………viii
附圖索引………………………………………………………………ix
第一章 簡介……………………………………………………………1
1.1為什麼要發展BiFET………………………………………………1
1.2本論文的工作與解決的問題………………………………………2
1.3論文架構……………………………………………………………4
第二章 BiFET的磊晶成長與特性驗證…………………………………5
2.1單獨PHEMT capless結構及BiFET結構的磊晶成長…………………5
2.2 BiFET的特性驗證製程………………………………………………5
2.2.1 Hall bar試樣製程………………………………………………5
2.2.2 蕭特基二極體試樣製程…………………………………………8
2.2.3 HBT元件製程……………………………………………………10
2.2.4射極TLM製程……………………………………………………14
2.2.5基極TLM製程………………………………………………………16
2.3 BiFET的特性量測…………………………………………………18
2.3.1 XRD量測及模擬…………………………………………………18
2.3.2 PL量測…………………………………………………………18
2.3.3 High resolution SIMS量測…………………………………18
2.3.4 Hall effect量測………………………………………………19
2.3.5 蕭特基二極體的電容-電壓量測………………………………21
2.3.6 HBT元件的電流-電壓特性量測…………………………………22
2.3.7 TLM的電阻量測…………………………………………………24
第三章 實驗結果與討論………………………………………………44
3.1 PHEMT特性…………………………………………………………44
3.1.1 PHEMT capless結構的XRD量測及及模擬結果…………………44
3.1.2 PHEMT capless結構的PL量測結果及理論計算………………45
3.1.3 PHEMT capless的Hall bar試樣量測結果……………………48
3.1.4 PHEMT capless的蕭特基二極體試樣電容-電壓量測結果……49
3.1.5 PHEMT結構的high resolution SIMS量測結果………………50
3.2 HBT特性……………………………………………………………51
3.2.1 HBT元件的電流-電壓量測結果………………………………51
3.2.2 TLM的量測結果…………………………………………………52
第四章 結論……………………………………………………………81
參考文獻………………………………………………………………82
[1] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a
(Ga,In)P emitter on a GaAs base, grown by molecular beam epitaxy”, IEEE Electron Device Lett., vol. 6, no. 4, pp. 175-177, Apr. 1985.
[2] K. Zitouni, K. Rerbal and A. Kadri, “Valence band structure calculations of GaAs/GaxIn1-xP strained-layer quantum wells”, Superlattices and Microstructures, vol. 13, no. 3, pp. 347-351, Apr. 1993.
[3] E. F. Schubert, A. Fischer, and K. Ploog, “The delta-doped field-effect transistor (δFET)”, IEEE Trans. Electron Devices,vol. 33, no. 5, pp. 625-632, May 1986.
[4] T. Y. Kuo, J. E. Cunningham, E. F. Schubert, W. T. Tsang, T. H. Chiu, F.
Ren, and C. G. Fonstad, “Selectively -doped quantum well transistor grown by gas-source molecular-beam epitaxy “ J. Appl. Phys., vol. 64, no. 6, pp. 3324-3327, Sep. 1988.
[5] N. Moll, M. R. Hueschen, and A. Fischer-Colbrie, “Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETs”, IEEE Trans. Electron Devices, vol. 35, no. 7, pp. 879-886, Jul. 1988.
[6] J. G. Pellegrino, N. A. Mahadik, M. V. Rao, W. F. Tseng, R. Thurber, D. Gajewski and J. Guyer, “Thermal instability and the growth of the InGaAs/AlGaAs pseudomorphic high electron mobility transistor system”, Appl. Phys. Lett., vol. 90, no. 11, 113504 , Jun. 2007.
[7] K. Y. Chu, S. Y. Cheng, T. P. Chen, C. W. Hung, L. Y. Chen, T. H. Tsai, W. C. Liu and L. A. Chen, “Influence of emitter-ledge thickness on the surface recombination mechanism of InGaP/GaAs heterojunction bipolar transistor”, Superlattices and Microstructures, vol. 43 ,2008, pp. 368–374.
[8]J. F. Woitok, “High-resolution XRD analysis of epitaxial layers”.
[9]I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys”, J. Appl. Phys., vol. 89, no. 11, pp. 5815-5875, Jun. 2001.
[10]Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica (Amsterdam) 34, 149, 1967.
[11]J. A. Van Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys”, Phys. Rev. B, vol. 1, no. 8, pp. 3351-3358, Apr. 1970.
[12]S. Tiwari and D. J. Frank, “Empirical fit to band discontinuities and barrier heights in III-V alloy systems”, Appl. Phys. Lett., vol. 60, no. 5, pp. 630-632, Feb. 1992.
[13] D. Inoue, S. Matsushita, K. Matsushita, M. Sawada, K. Yodoshi and Y. Harada, “Influence of rapid thermal annealing on modulation doped structure”, Solid-State Electronics, vol. 41, no. 10, pp. 1475-1479, Oct. 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊