跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳翰儒
研究生(外文):Han-Ru Chen
論文名稱:適用於無線連結系統之混合策略多層次視訊編碼演算法及架構設計
論文名稱(外文):Algorithm and Architecture Design of Multi-layer Video Coding Engine with Hybrid Scheme for Wireless Video Links
指導教授:簡韶逸
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:64
中文關鍵詞:無線視訊系統無失真壓縮多層次
外文關鍵詞:wireless video systemlossless codingmulti-layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多樣化的消費性電子產品造就了前所未有的數位多媒體家庭影音整合式應用,以播放裝置為例,可攜式多媒體播放器、平面顯示器,甚至是單槍投影機都是新一代的顯示裝置。然而,若是這樣多樣化的裝置能夠連結於無線系統,必定能帶給使用者極大的便利性。無線連結系統近年來急速發展,但是在傳輸頻寬方面,仍與有線連結傳輸有一段相當大的差距。而且,基於使用者追求高畫質視訊的概念,使得視訊傳輸壓縮必須要使用無失真的方法。因此,若要在無線連結系統下進行視訊傳輸,使用無失真編碼/解碼器是無可避免的。一個應用於無線連結系統的視訊編碼必須含有下面幾項特點:其一,此編碼必須有極低的延遲時間,才可以在即時視訊傳輸上避免使用者感知的延遲;其二,此編碼必須有較高的錯誤抵抗能力以處理傳輸所造成的資料錯誤;再者,以目前常用規格而言,一個全像素,即1920×1080,每秒60張的視訊資料,若要以無線USB(480bps)傳輸的話,則此視訊編碼必須提供五至十倍的壓縮倍率。
本論文提出了一個採用混合策略的多層次編碼器,其中含有三個主要的單元:辨識單元(classify unit)、內部預測單元(intra unit)、以及無失真編碼單元(JLS unit)。辨識單元能夠將視訊來源影像分解成兩部分,分別為自然影像以及人工介面,此辨識可以預先決定模式而不用等最後才決定,預先決定模式可以將分類的區域獲得更好的壓縮效率;內部預測單元以近乎無失真壓縮方式處理自然影像區域;無失真編碼單元則處理人工介面區域,這兩個單元處理後的輸出為基礎層位元流(base-layer bitstream);此外,原本自然影像區域與重建自然影像區域的差值將會經過無失真編碼單元再次處理,形成強化層位元流(enhancement-layer bitstream)。
本論文提出的多層次辨識概念是基於一個假設,即多樣化的輸入視訊多為包含自然區域及人工介面的複合式影像,這個假設可使辨識後的影像區域得到較佳的處理已達到高壓縮效率;另外,採用混合策略編碼實現了一個適合的位元流,可以有彈性的適應於無線連結頻寬多變動,即若當無線頻寬足夠時,基礎層和強化層都將接收並且解壓縮還原成一個無失真的影像,否則就單解壓縮基礎層還原成一個近乎無失真的影像;此外,為了避免大量的錯誤擴散,使編碼器不使用時間資訊做預測,同時也可以降低運算複雜度及時間延遲。
我們將此編碼器實現成晶片,原型晶片利用聯電90奈米技術製程,面積為2.4×2.2mm2`,其工作頻率為216MHz,處理速度為每秒124MSamples/sec,最大支援規格為1920×1080每秒60張影像。
Variant consuming electronic products make the home digital multimedia integrations very different from the past. For Example, a display device might be a portable handout, a flat panel, or a projector. It must be much more convenient
if these devices are linked in a wireless system. Wireless system has developed for years but still exists a large gap to the wire linkage, especially in bandwidth variation. Furthermore, the desire of enjoy high definition video quality makes the video raw data cannot be compression in lossy way. As the result, it is inevitable to encode the video raw data in a wireless link system. A video coding for wireless link system has some particular requirements as following. It requires low latency for real-time applications. Besides, it concerns more error robustness for
wireless transmission noise. Moreover, if the Full-HD(1080p) 60fps video source would like to transmission in a wireless-USB(480Mbps), the video coding must provide a 5-10 times compression ratio.
In this thesis, a multi-layer encoder with hybrid scheme is proposed. In this encoder, there are three main units, which are classify unit, intra unit, and JLS unit.
The classify unit can decompose the video source frame into two layers which are natural picture layer and graphic interface layer. This can cause a previous mode decision instead of a latter one, and processing each layers in different scheme.
The intra unit is near-lossless intra prediction core. It is used to encode the natural picture region , and reconstruct a near-lossless region. The JLS unit is used to
encode the graphic interface region with the lossless JPEG-LS algorithm. These near-lossless natural region and graphic interface region are the base-layer bitstream of the proposed encoder. Besides, the difference of the origin natural picture region and the reconstructed one is sent to JLS unit to encode again as a enhancement-layer bitstream.
The multi-layer classification is based on the assumption of the video source is usually a compound frame consisting of natural picture and graphic user interface.
This assumption causes the video raw data could be compressed more efficiently.
The hybrid scheme coding realizes a flexibility of adaptive bitstream for wireless bandwidth variations. The decoder can choose to decode both base-layer and enhancement-layer bitstream to reconstruct a lossless frame while the bandwidth is unlimited. It can also choose and decode only the base-layer bitstream to reconstruct a near-lossless frame in low bandwidth environment. To prevent temporal
error propagations, the proposed encoder dose not use inter prediction. Besides, this can also reduce the computation complexity and latency.
The proposed multi-layer encoder with hybrid scheme is implemented in this thesis.
The prototype chip is fabricated using UMC 90um technology, and the chip size is 2.4×2.2mm2. The design working frequency is 216MHz, and the processing capability of the chip is 124MSamples/sec. The max specification of video
processing is 1920×1080 60Hz.
口試委員審定書
誌謝
中文摘要
List of Figures......iii
List of Tables......v
Abstract......vii
1 Introduction......1
1.1 Introduction.....1
1.1.1 High Definition Multimedia Interface and Lossless Video Data Coding......1
1.1.2 Home Digital Multimedia Integration with Wireless Transmission......2
1.2 Motivation......4
1.3 Thesis Organization......5
2 Related Codec Standard Overview and Previous Works......7
2.1 Introduction of DPCM scheme......8
2.2 Image Codec......8
2.2.1 JPEG......8
2.2.2 JPEG-2k......10
2.3 VideoCodec......11
2.4 AnalysisandDesignChallenges......12
3 Multi-layer Video Coding with Hybrid Scheme......15
3.1 Multi-layer Coding With Hybrid Scheme Overview......15
3.2 Concepts of Multi-layer......16
3.2.1 Why Multi-layer......16
3.2.2 Multi-layer Analysis......18
3.3 Classification and Decomposition......21
3.4 Near-lossless Block-based Intra Prediction......25
3.4.1 Transform and Quantization......26
3.4.2 Prediction and Mode Decision......28
3.4.3 Inverse Transform and Reconstruction......28
3.4.4 Context-Adaptive Variable-Length Coding......31
3.5 Lossless JPEG-LS......31
3.5.1 Context Modeling......32
3.5.2 Regular Mode......33
3.5.3 Run Mode......37
3.5.4 Golomb Coding......39
3.5.5 Update Variables......40
3.6 Experiment Results and Comparison......42
4 Architecture Design of Multi-layer Video Coding Engine......43
4.1 Architecture Overview......43
4.2 Classify Unit......44
4.3 Intra Unit......45
4.4 JLS Unit......46
4.5 Control Unit......49
5 Chip Implementation......53
5.1 Design Flow......53
5.2 Chip Layout and Specification......54
5.3 Comparison......56
6 Conclusion......59
Reference......61
[1] T C. Chen, S. Y. Chien, Y.W. Huang, C. H. Tsai, C. Y. Chen, T.W. Chen, and
L. G. Chen, “Analysis and architecture design of an HDTV720p 30 frames/s
H.264/AVC encoder,” in IEEE Transactions on Circuits and Systems for
Video Technology, June 2006, vol. 16, pp. 673–688.
[2] "http://www.hdmi.org/manufacture/technology.asp,".
[3] ISO/IEC JTC 1/SC 29/WG 1 FCD 14495 - public draft, Lossless and nearlossless
coding of continuous tone still images (JPEG-LS), 1997.
[4] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,”
IEEE Transactions Communications, vol. 45, no. 4, pp. 437–444, Apr. 1997.
[5] F. Golchin and K. K. Paliwal, “A context-based adaptive predictor for use in
lossless image coding,” in Proceedings of IEEE Region 10 Annual Conference
on Speech and Image Technologies for Computing and Telecommunications,
Dec. 1997, vol. 2, pp. 711–714.
[6] K. H. Yang and A. F. Faryar, “A context-based predictive coder for lossless
and near-lossless compression of video,” in Proceedings of IEEE International
Conference on Image Processing, 2000, pp. 144–147.
[7] D. Brunello, G. Calvagno, G. A. Mian, and R. Rinaldo, “Lossless compression
of video using temporal information,” IEEE Transactions on Image
Processing, vol. 12, no. 2, pp. 575–586, Feb. 2003.
[8] Y. Li and K. Sayood, “Lossless video sequence compression using adaptive
prediction,” IEEE Transactions on Image Processing, vol. 16, no. 4, pp.
997–1007, Apr. 2007.
[9] Y. L. Lee, K. H. Han, and G. J. Sullivan, “Improved lossless intra coding
for H.264/MPEG-4 AVC,” IEEE Transactions on Image Processing, vol. 15,
no. 9, pp. 2610–2615, Sept. 2006.
[10] J. Jiang, J. Xia, and G. Xiao, “MPEG-2 based lossless video compression,”
IEE - Vision on Image and Signal Processing, vol. 153, no. 2, pp. 244–252,
Apr. 2006.
[11] X. Xie, G. L. Li, D. M. Li, C. Zhang, and Z. H. Wang, “A new near-lossless
image compression algorithm suitable for hareware design in wireless endoscopy
system,” in Proceedings of ICIP, 2005, vol. 1, pp. 1125–1128.
[12] X. Li, X. Xie, X. Chen. G. Li, L. Zhang, Z. Wang, and H. Chen, “Design
and implementation of a low complexity near-lossless compression method
for wireless endoscopy capsule system,” in IEEE International Symposium
on Circuits and Systems, 2007., May 2007, pp. 1321–1324.
[13] “http://www.usb.org/developers/wusb/,” .
[14] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards,
Kluwer Academic, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts
02061, 2003.
[15] H. Yamauchi, S. Okada, K. Taketa, T. Ohyama, Y. Matsuda, T. Mori,
S. Okada, T. Watanabe, Y. Matsuo, Y. Yamada, T. Ichikawa, and Y. Matsushita,
“Image processor capable of block-noise-free JPEG2000 compression
with 30 fps for digtital camera applications,” in Digest of Technical
Papers of 2003 IEEE International Solid-State Circuits Conference, 2003.,
May 2003, vol. 1, pp. 46–477.
[16] H. C. Fang, Y. W. Chang, T. C. Wang, C. T. Huang, and L. G. Chen, “Highperformance
JPEG 2000 encoder with rate-distortion optimization,” in IEEE
Transactions on Multimedia, Aug. 2006, vol. 8, pp. 46–477.
[17] ITU-T Recommendation H.264 and ISO/IEC 14496-10, Draft ITU-T Recommendation
and Final Draft International Standard of Joint Video Specification,
2003.
[18] Z. Liu, Y. Song, M. Shao, S. Li, L. Li, S. Ishiwata, M. Nakagawa,
S. Goto, and T. Ikenaga, “A 1.41W H.264/AVC real-time encoder SOC
for HDTV1080p,” in 2007 IEEE Symposium on VLSI Circuits, May 2007,
vol. 14-16, pp. 12–13.
[19] Y. H. Chen, T. D. Chuang, Y. J. Chen, C. T. Li, C. J. Hsu, S. Y. Chien,
and L. G. Chen, “An H.264/AVC scalable extension and high profile HDTV
1080p encoder chip,” in 2008 IEEE Symposium on VLSI Circuits,May 2008,
vol. 18-20, pp. 104–105.
[20] M. Shinmoto, Y. Mltsukura, M. Fukumi, and N. Akamatsu, “Color image
classification using neural networks,” in Proceeding of the 41st SICE Annual
Conference, SICE 2002, Aug. 2002, vol. 3, pp. 1622–1626.
[21] T.W. Chen, C. H. Sun, J. Y. Bai, H. R. Chen, and S. Y. Chien, “Architectural
analyses of k-means silicon intellectual property for image segmentation,” in
IEEE International Symposium on Circuits and Systems, 2008., May 2008,
pp. 2578–2581.
[22] C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Supportvector-
based fuzzy neural network for pattern classification,” IEEE Transcation
on Fuzzy Systems., vol. 14, no. 1, pp. 2578–2581, Feb. 2006.
[23] MaxMignotte, “Sementation by fusion of histogram-based k-means clusters
in different color spaces,” IEEE Transcation on Image Processing., vol. 17,
no. 5, pp. 780–787, May 2008.
[24] S. Prabhakar, H. Cheng, J. C. Handly, Z. Fan, and Y. W. Lin, “Picturegraphic
color image classification,” in Proceedings of 2002 International
Conference on Image Processing, Sept. 2002, vol. 2, pp. 785–788.
[25] D. Mukherjee, N. Memon, and A. Said, “JPEG-matched MRC compression
of compound documents,” in Proceedings of 2001 International Conference
on Image Processing, Oct. 2001, vol. 3, pp. 434–437.
[26] J. F. C. Wanderley and M. H. Fisher, “Color texture invariants for natural
image recognition based on human visual system,” in The 7th IEEE International
Conference on Electronic Circuit and Systems, 2000, Dec. 2000,
vol. 1, pp. 295–298.
[27] C. Kuo and A. H. Tewfik, “Color halftone document segmentation and descreening,”
in Proceedings of 2001 International Conference on Image Processing,
Oct. 2001, vol. 2, pp. 1065–1068.
[28] Y. Y. Chang, “Lossless image compression JPEG-LS encoder IC design,”
M.S. thesis, Nation Taiwan University, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top