跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳易楓
研究生(外文):I-Fong Chen
論文名稱:全數位時脈資料回復器及全數位鎖相迴路
論文名稱(外文):All-digital Clock and Data Recovery and All-digital Phase-locked Loop
指導教授:劉深淵
指導教授(外文):Shen-Iuan Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:120
中文關鍵詞:全數位時脈資料回復器全數位鎖相迴路
外文關鍵詞:ADCDRADPLL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,在製程的定位上都是以減少電晶體尺寸為主,這可使電路設計上得到更高的操作頻率和更少的功率消耗,卻不利於類比電路設計,反之,更適合數位電路設計,因此已有許多的類比電路改以數位方式實現,例如,鎖相迴路和資料時脈回復電路。
在論文中,1.25Gbps全數位資料時脈回復電路被提出,由於累加器時脈頻率的限制,因此提出由預先累加器和具有定標器的路徑(第一積分路徑)來降低累加器的時脈頻率及迴路延遲,藉由降低迴路延遲可使用較小的正比路徑增益來獲得較低的時脈抖動,卻不會犧牲相位邊限,且與未具有第一積分路徑的迴路比較,又可增加阻尼係數和迴路頻寬。在所提出的1.25 Gbps全數位資料時脈回復電路其時脈抖動為51.1ps且錯誤率皆低於10-12,功率消耗和主動元件面積分別為23.4mW和0.423mm2。
在論文中,1.25GHz全數位鎖相迴路被提出,一個二位元型態的全數位鎖相迴路需要較長的頻率獲取時間,因為相位頻率偵測器的輸出僅為+1和-1,故提出一個有效的減少頻率獲取時間的演算法,在全數位鎖相迴路中數位控制振盪器對於電源雜訊有最大影響,因此提出迴路頻寬調校電路來決定可使時脈抖動為最小的頻寬,其利用時間窗(timing window)來偵測時脈抖動調整頻寬。在提出的1.25 GHz全數位鎖相迴路其時脈抖動為38.9ps且相位雜訊在1MHz偏移時為-103.22dBc/Hz,功率消耗為9mW,而主動元件面積為0.348mm2。
In recent years, the orientation of the fabrication process is to shrink the scaling of the transistor. Scaling down the transistor will have less power consumption and faster operation frequency to design circuits. However, it has extra drawbacks for analog circuits, but it is more suitable for digital circuits. Therefore, digital equivalent implementations of analog circuits are more popular, such as the phase-locked loop and the clock and data recovery.
In this thesis, a 1.25 Gbps all-digital clock and data recovery is proposed. The clock frequency of the accumulator is too slow. The proposed pre-accumulator and the path with the scaler (the first integral path) are used to slow down the clock frequency of the accumulator and reduce the loop latency. By reducing the loop latency, the smaller is used to have low jitter performance without sacrificing the phase margin. Compared with the loop without the first integral path, it also increases the damping factor and the bandwidth. The jitter of the proposed 1.25Gbps all-digital clock and data recovery is only 51.1 ps and its bit error rate is below 10-12. The power consumption is 23.4 mW and the core area is 0.423mm2.
In this thesis, a 1.25 GHz all-digital phase-locked loop is proposed. The bang-bang type all-digital phase-locked loop needs long frequency acquisition time because the phase/frequency detector only has binary outputs, and. The proposed algorithm can effectively reduce the frequency acquisition time. The supply noise toward the DCO has severely impact in the all-digital PLL. Therefore, the proposed bandwidth calibration circuit decides the bandwidth which make the all-digital PLL have the lowest jitter by using the timing window measuring the jitter to change the bandwidth. The jitter of the proposed all-digital phase-locked loop is 38.9 ps and the phase noise is -103.22dBc/Hz at 1MHz offset. Its power consumption is 9 mW and the core area is 0.348mm2.
Abstract .................................................i
Table of Contents ........................................v
List of Figures .........................................vii
List of Tables .........................................xiii

Chapter 1 Introduction ...................................1
1.1 Motivation ...........................................1
1.2 Thesis Overview ......................................2

Chapter 2 Analog Clock and Data Recovery Circuit .........3
2.1 Simple CDR Architecture and Fundamental Circuits .....3
2.1.1 Edge Detector ......................................4
2.1.2 Phase Detector .....................................5
2.1.3 Frequency Detector ................................10
2.1.4 Voltage-Controlled Oscillator .....................15
2.2 Jitter Transfer and Jitter Tolerance ................17

Chapter 3 All-digital Clock and Data Recovery Circuit ...27
3.1 Introduction ........................................27
3.2 The Analysis of an All-digital CDR Circuit ..........29
3.3 The Proposed All-digital CDR Architecture ...........38
3.4 Circuit Implementation ..............................40
3.4.1 Frequency Detector ................................40
3.4.2 Lock Detector .....................................42
3.4.3 Pre-accumulator ...................................43
3.4.4 Accumulator .......................................45
3.4.5 Delta Sigma Modulator .............................45
3.4.6 Digitally Controlled Oscillator ...................46
3.5 Simulation Results ..................................50
3.5.1 Behavior Simulation ...............................50
3.5.2 DCO Transfer Curve ................................52
3.5.3 Closed-loop Simulation ............................55
3.6 Experimental Results ................................57
3.4 Summary and Comparison ..............................70

Chapter 4 All-digital Phase-locked Loop .................71
4.1 Introduction ........................................72
4.2 All-digital Phase-locked Loop Analysis ..............73
4.2.1 Analysis of the First-order BBPLL .................75
4.2.2 Analysis of the Second-order BBPLL ................77
4.3 The Proposed All-digital PLL Architecture ...........87
4.4 Circuit Implementation ..............................89
4.4.1 Bang-bang Phase and Frequency Detector ............89
4.4.2 Digital Loop Filter ...............................90
4.4.3 Delta Sigma Modulator .............................91
4.4.4 Digitally Controlled Oscillator ...................92
4.4.5 Fast-locked Circuit ...............................92
4.4.6 Bandwidth Calibration Circuit .....................97
4.5 Simulation Results .................................100
4.5.1 Behavior Simulation ..............................100
4.5.2 DCO Transfer Curve ...............................101
4.5.3 Fast-locked Circuit ..............................103
4.5.4 Closed-loop Simulation ...........................105
4.6 Experimental Results ...............................106
4.7 Summary and Comparison .............................113

Chapter 5 Conclusions ..................................115

Bibliography ...........................................117
[1] B. Razavi, “Design of Integrated Circuits for Optical Communications,” McGraw Hill, international edition, 2002.
[2] P. K. Hanumolu, M. G. Kim, G. Y. Wei, and U. K. Moon, “A 1.6Gbps Digital Clock and Data Recovery Circuit,” in proc. IEEE 2006 Custom Integrated Circuits Conference, Sept. 2006, pp. 603-606.
[3] C. M. Hsu, M. Z. Straayer, and M. H. Perrott, “A Low-noise, Wide-BW 3.6GHz Digital ΔΣ Fractional-N Frequency Synthesizer with a Noise-shaping Time-to-digital Converter and Quantization Noise Cancellation,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2776-2786, Dec. 2008.
[4] M. Ferriss, and M. P. Flynn, “A 14mW Fractional-N PLL Modulator with an Enhanced Digital Phase Detector and Frequency Switching Scheme,” International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2007, pp. 352-353, 608.
[5] R.B. Staszewski, C. M. Hung, D. Leipold, and P.T. Balsara, “A First Multigigahertz Digitally Controlled Oscillator for Wireless Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 11, pp. 2154-2164, Nov. 2003.
[6] D. H. Oh, D. S. Kim, S. Kim, D. K. Jeong, and W. Kim, “A 2.8Gb/s All-digital CDR with a 10b Monotonic DCO,” International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2007, pp. 222-223, 598.
[7] J.L. Sonntag, and J. Stonick, “A Digital Clock and Data Recovery Architecture for Multi-gigabit/s Binary Links,” IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1867-1875, Aug. 2006.
[8] J. Lee, K.S. Kundert, and B . Razavi, “Analysis and Modeling of Bang-bang Clock and Data Recovery Circuits,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1571-1580, Sept. 2004.
[9] R.B. Staszewski, K. Muhammad, D. Leipold, C. M. Hung, Y. C. Ho, J.L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung, J. Koh, S. John, I. Y. Deng, V. Sarda, O. Moreira-Tamayo, V. Mayega, R. Katz, O. Friedman, O.E. Eliezer, E. de-Obaldia, and P.T. Balsara, “All-digital TX Frequency Synthesizer and Discrete-time Receiver for Bluetooth Radio in 130-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2278-2291, Dec. 2004.
[10] K. H. Kim, Y. S. Sohn, C. K. Kim, M. Park, D. J. Lee, W. S. Kim, and C. Kim, “A 20-gb/s 256-mb DRAM with an Inductorless Quadrature PLL and a Cascaded Pre-emphasis Transmitter,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 127-134, Jan. 2006.
[11] T. Pittorino, Y. Chen, V. Neubauer, T. Mayer, and L. Maurer, “A UMTS-compliant Fully Digitally Controlled Oscillator with 100Mhz Fine-tuning Range in 0.13μm CMOS,” International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2006, pp. 770-779.
[12] M. Brownlee, P.K. Hanumolu, and U. K. Moon, “A 3.2Gb/s Oversampling CDR with Improved Jitter Tolerance,” IEEE 2007 Custom Integrated Circuits Conference, Sept. 2007, pp. 353-356.
[13] V. Kratyuk, P.K. Hanumolu, K. Mayaram, and U. K. Moon, “A 0.6GHz to 2GHz Digital PLL with Wide Tracking Range,” IEEE 2007 Custom Integrated Circuits Conference, Sept. 2007, pp. 305-308.
[14] N. D. Dalt, E. Thaller, P. Gregorius, and L. Gazsi, “A Compact Triple-band Low-jitter Digital LC PLL with Programmable Coil in 130-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1482-1490, July 2005.
[15] R.B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P.T. Balsara, “1.3 V 20 ps Time-to-digital Converter for Frequency Synthesis in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 220-224, March 2006.
[16] V. Kratyuk, P.K. Hanumolu, K. Ok, K. Mayaram, and U. K. Moon, “A Digital PLL with a Stochastic Time-to-digital Converter,” in Proc. Symposium on VLSI Circuits Digest of Technical Papers, 2006, pp. 31-32.
[17] R. Tonietto, E. Zuffetti, R. Castello, and I. Bietti, “A 3MHz Bandwidth Low Noise RF All Digital PLL with 12ps Resolution Time to Digital Converter,” in Proceedings of the 32nd European Solid-State Circuits Conference (ESSCIRC), Sept. 2006, pp. 150-153.
[18] V. Ramakrishnan, and P.T. Balsara, “A Wide-range, High-resolution, Compact, CMOS Time to Digital Converter,” in Proceedings of the 19th International Conference on VLSI Design, Jan. 2006.
[19] M. Lee and A. A. Abidi, “A 9 b, 1.25 ps Resolution Coarse-fine Time-to-digital Converter in 90 nm CMOS that Amplifies a Time Residue,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 769-777, April 2008.
[20] N. D. Dalt, “A Design-oriented Study of the Nonlinear Dynamics of Digital Bang-bang PLLs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 1, pp. 21-31, Jan. 2005.
[21] C. H. Lee, K. McClellan, and J. Choma, Jr., “Supply Noise Insensitive PLL Design through PWL Behavioral Modeling and Simulation,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 12, pp. 1137-1144, Dec. 2001.
[22] C. H. Lee, J. Cornish, K. McClellan, and J. Choma, Jr., “Design of Low Jitter PLL for Clock Generator with Supply Noise Insensitive VCO,” in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, vol. 1, 31 May-3 June 1998, pp. 233-236.
[23] T. Wu, K. Mayaram, U. K. Moon, “An On-chip Calibration Technique for Reducing Supply Voltage Sensitivity in Ring Oscillators,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 775-783, April 2007.
[24] H. H. Chang, S. M. Lee, C. W. Chou, Y. T. Chang, Y. L. Cheng, “A 1.6-880MHz Synthesizable ADPLL in 0.13um CMOS,” in Proc. IEEE International Symposium on VLSI Design Automation and Test, April 2008, pp. 9-12.
[25] R. J. Yang, “Design and Implementation of CMOS Clock Generation and Clock/Data Recovery Circuits for Wired-line Transceivers,” PhD thesis, June 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 呂玉瑕,1980,<社會變遷中台灣婦女之事業觀:婦女角色意識與就業態度的探討>,《中央研究院民族學研究所集刊》,50期,pp.25~65。
2. 王甫昌,1993,<光復後台灣漢人族群通婚的原因與形式初探>,《中央研究院民族學研究所集刊》,76期,pp.43~96。
3. 呂玉瑕,1983,<婦女就業與家庭角色、權力結構之關係>,《中央研究院民族學研究所集刊》,56期,pp.111~143。
4. 吳忠吉,1988/09,<產業就業性別結構的初步研究>,《經濟論文叢刊》,第16輯第3期,pp.439~456。
5. 黃勝雄,1996,<族群、社會文化與空間意涵>,《思與言》,34期3卷,pp.185~240。
6. 陳敏郎,1994,<文化秩序與社會秩序:布迪厄(P. Bourdieu)論文化正當性的建構及其再生產>,《思與言》,32期3卷,pp.113~138。
7. 殷寶寧,1994/11,<性別化了的城市空間-婦女與城市經驗研究之理論回顧>,《建築研究成果發表論文集》。
8. 蔡振興,1993/02,<法國女性主義-伊力莉佳萊論他者>,《中外文學》,第21卷第9期,pp.47~65。
9. 蔡淑鈴,1994/06,<台灣之婚姻配對模式>,《人文及社會科學集刊》,第6卷第2期,pp.335~371。
10. 鄧景衡,1999,<空間律動的追尋:地方芭蕾的變奏與生活、工藝的轉型>,《中國文化大學地理系地理研究報告》,NO.12,pp.71~79。
11. 劉克智,1988/09,<台灣勞動市場的發展與研究>,《經濟論文叢刊》,第16輯第3期,pp.459~463。
12. 劉毓秀,1996/04,<走出「唯一」,流向「非一」:從佛洛伊德到依蕊格萊>,《中外文學》,第24卷第11期,pp.8~39。
13. 〈中國古典詩詞教學與習作的新嘗試網路作詩填詞系統兼及其可行性與侷限性〉,羅鳳珠,教學科技與媒體第36期
14. 〈台灣地區中國古籍數位化的現況與展望〉,羅鳳珠,2001 年 6 月《書目季刊》第 35 卷第 1 期
15. 〈劉宋詩人用韻研究〉,許金枝,中正嶺學術研究集刊