跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/06 07:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈中琛
研究生(外文):Jung-Tsen Shen
論文名稱:太陽能電池模型分析及新式最大功率追踪系統
論文名稱(外文):Solar Cell Modeling & Novel Maximum Power Point Tracking Scheme of Photovoltaic Power System
指導教授:劉致為
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:79
中文關鍵詞:太陽能電池模型最大功率追踪系統
外文關鍵詞:Solar Cell ModelMPPT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

在全球廣泛的應用熱潮之下,太陽能電力系統的重要性逐漸增加,高漲的油價刺激了太陽能電力系統的需求,從百萬仟瓦的電廠到小型個人攜帶裝置,熱潮逐波而來。在過去數年,太陽能市塲需求年增率平均為百分之四十,使得這一產業成當今最快速成長的產業之一。商業分析師預測市塲規模將在2010年達到四百億歐元,而同時消費者將可享有合理的電價及環保的能源。
由於不同的應用條件,如環境温度變化及照度波動等等,在設計之初,太陽能最大功率系統必須廣泛考慮各項變動因素。太陽能電池由於材料,製程,尺寸等等的不同,會有不同的電流-電壓曲線及特性, 對太陽能電池的電氣特性予以模型化,對系統之設計及各種應用條件之模擬亦為一項重要的工作。
一般常見之最大功率追踪系統,常採用ADC及微處理器(MCU或DSP),作為偵測,判斷控制之主要架構,然而,此種架構,在一些中低功率的系統而言,額外功率消耗及成本都太高,造成經濟效益的損失,更進一步而言,精簡的架構可以籍由先進的制程被整合進入太陽能模組,使得成本效益更高,佔用體積更小,重量更輕,因而使應用面更廣泛。
在本文中,建議的精簡,低成本,最大功率追踪系統將被說明並討論,由數個運算放大器及簡單數位邏輯所組成之控制迴路,將太陽能電池之直流輸出昇壓,並執行最大功率追踪。在不同之使用環境下,系統被模擬驗証, 並得到具體結果。經由詳細的模擬驗証, 我們証明了此系統架構為可行並有能效地率追踪最大功率。
Abstract

Consciousness of environmental protection and soaring oil price spur worldwide demand for photovoltaic power systems, ranging from million K watt power plants to handy devices like notebook PC, mobile phone…. In the past years, the yearly world market growth rate for photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market
volume to increase to �� 40 billion in 2010.
To evaluate PV system under various conditions such as environmental temperature drift or irradiance level fluctuation, we need models to fit the electrical characteristics of solar cells, and these models will be taken into our designs of the maximum power point tracking system. For different solar cell types, the I-V curves have different model parameters due to the material, manufacturing process, dimension,.. ., therefore, the solar cell equivalent models should be derived from I-V data to match solar cells’ electrical characteristics as accurately as possible.
Traditional PV system maximum power point tracking, MPPT, converters are u proposed with a digital controller (MCU or DSP ) in many works. However, for low power applications, such controllers in the MPPT system are costly and the power consumption overhead is also too high. Moreover, for long term point of view, a compact MPPT device may be integrated into the PV cells/module with the advanced process technologies. In this work, we present a compact and cost-effective solar power MPPT system. A couple of op amplifiers and some logics are employed to track the maximum output power of the solar string. We simulated the proposed MPPT scheme under various conditions, and the results show that it is reliable and can track maximum power point correctly.
Contents

Abstract (Chinese) ................................................I

Abstract (English) ...............................................II

Contents ...............................................III

Table
Captions .................................................V

Figure
Captions ................................................VI





Chapter1
Introduction of Solar Cells & Photovoltaic
Power System --------------------------------1

Chapter 2
MPPT Schemes & Commercial Solutions --------10
2.1 MPPT schemes ----------------------------10
2.2  Survey of MPPT Solutions----------------14

Chapter 3
Photovoltaic System Operation Efficiency----16
3.1  Solar Cell Modeling & Fine Textures
on Surface ------------------------------17
3.2 Shading Effects on Solar Cell,
String, & Array -------------------------29
3.3  Countermeasures of Shading Effect -------30
3.3.1  Power Extraction Scheme ----------30
3.2byassiode -----------------------------37
3.4  Low Irradiance (Low VOC ) operation------43


Chapter 4
Proposed MPPT System------------------------44
4.1 System Concept of Proposed MPPT System --45
4.2 Introduction of System Operation Flow-----48
4.3  Proposed High- Efficiency MPPT Scheme-----49
4.3.1  Correlated Double Sample-&-Hold----49
4.3.2  Low-Pass Filter of Power Detection--50
4.3.3  Control Logic of Tracking Gear-up/down-52
4.3.4  Overall System Power Consumption----53
4.3.5 Enhanced Control Logic -------------54
4.4  Verification of Proposed MPPT scheme
under Various Conditions------------------55
4.4.1  Power tracking under steady irradiance-------55
4.4.2  Power tracking with irradiance
variation---------------------------57
4.4.3  Power tracking with temperature
variation---------------------------58

Chapter 5 Summary & Future Works ------------------61
References ------------------------------------------63
Appendix --------------------------------------------66
[1] Arnulf Jäger-Waldau ,Thin Films in the Photovoltaic Industry, Workshop Proceedings of the 3rd International Workshop, 22/23 November 2007, page 25,40. (http://sunbird.jrc.it/refsys/pdf/Thin%20Film%20WS%202007.pdf)
[2] Mathews, J.H.: „Numerical Methods for Computer Science, Engineering and Mathematics“, Prentice-Hall, London, 1987.
[3] The World PV Market to Year 2010,
,http://www.agores.org/Publications/PV2010/Vol3chapter0.pdf
[4] Arnulf Jäger-Waldau, Status of PV Research, Solar Cell Production and Market Implementation in Japan, USA and the European Union, European Commission, DG JRC, Institute for Environment and Sustainability, Renewable Energies Unit, September 2002
[5]Johan H. R. Enslin, Mario S. Wolf, Dani¨el B. Snyman, and Wernher Swiegers ,Integrated Photovoltaic Maximum Power Point Tracking Converter, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 44, NO. 6, DECEMBER 1997
[6] Altas IH, Sharaf AM. A fuzzy logic power tracking controller for a photovoltaic energy conversion scheme. Electr Power Syst Res J1992;25(3):227–38.
[7] Kuo Y-C, Liang T-J, Chen J-F. Novel maximum-power-point tracking controller for photovoltaic energy conversion system. IEEE Trans Ind. Electron 2001; 48(3):594–601.
[8]Hua C, Lin J. An on-line MPPT algorithm for rapidly changing illuminations of solar arrays. Renew Energy 2003;28:1129–42
[9] Harnessing Solar Power with Smart Power-Conversion Techniques, Application Note 484,http://www.maxim-ic.com/an484
[10] H. Shao, C.-Y. Tsui, W.-H. Ki, "An Inductor-less Micro Solar Power Management System Design for Energy Harvesting Applications," IEEE ISCAS, pp. 1353 -- 1356, 2007.
[11] S. Foss, B. Olaisen, E. Marstein, A. Holt, A new 2.5d distributed spice model of solar cells, in: European Photovoltaic Solar Energy Conference 2006.
[12] S.O. Kasap, Optoelectronics and Photonics-Principles and Practices, Prentice Hall, pp.254-274.
[13]Kensuke Nishioka, Nobuhiro Sakitani, Ken-ichi Kurobe, Yukie Yamamoto, Analysis of the Temperature Characteristics in Polycrystalline Si Solar Cells Using Modified Equivalent Circuit Model, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 7175–7179
[14]Nishioka Kensuka, S. Nobuhiro, U. Yukiharu, F. Takashi ,Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration, Solar energy materials and solar cells ISSN 0927-0248 2007, vol. 91, no13, pp. 1222-1227
[15]A. Hovinen, Fitting of the Solar Cell /V-curve to the Two Diode Model, Physica Scripta Vol. T54, 175-176, 1994
[16 ] U. Jahn, R. Auer: Infrared Analysis of PV Modules for Improving Quality, 22nd EPVSEC, 2007
[17] N.D. Kaushika, Anil K. Rai: An investigation of mismatch losses in solar photovoltaic cell networks, Energy 32 (2007)
[18] W. Herrmann, M. Adrian, W. Wiesner: Operational behavior of commercial solar cells under reverse biased conditions, 2nd WCPEC, Vienna, 1998, pp. 2357-2359
[19] Green, M.A.; Gauja, E.; Yachamanankul, W.W.: „Silicon solar cells with integrated bypass diodes“ Solar Cells, Vol. 3, pp. 233-244, 1981.
[20] Abete, A.; Barbisio, E.; Cane, F.; Demartini, P.: „Analysis of photovoltaic modules with protection diodes in presence of mismatching“21st IEEE PV Specialists Conference, Kissimimee, pp. 1005-1010, 1990.
[21] Kukulka, Jerry R., Solar cell with integrated bypass diode and method, United States Patent 5616185
[22] ”World’s first 0.3V operation power supply IC Employs fully-depleted SOI technology”, http://www.seiko-instruments.co.jp/info/eg/soi1.html
[23] http://focus.ti.com.cn/cn/lit/an/sloa070/sloa070.pdf, Using Texas Instruments Spice Models in Pspice
[24] http://www.analog.com/static/imported-files/data_sheets/mlt04.pdf
[25] http://www.national.com/ds/LM/LMC6024.pdf
[26] http://focus.ti.com/lit/ds/symlink/cd74hct193.pdf
[27] http://www.cdilsemi.com/datasheets/bat64_06.pdf
[28] K. Blake, “Component Pre-distortion for Sallen-Key Filters,” Comlinear Application Note, OA-21, Rev. B, July 1996.
[29] K. Antreich, H. Graeb, and C. Wieser, “Circuit Analysis and Optimization Driven by Worst-Case Distances,” IEEE Trans. Computer-Aided Design, vol. 13(1), pp.59–71, Jan. 1994.
[30] K. Krishna and S. Director, “The Linearized Performance Penalty (LPP) Method for Optimization of Parametric Yield and Its Reliability,” IEEE Trans. Computer-Aided Design, vol. 14(12), pp. 1557–68, Dec. 1995.
[31] A. Lokanathan and J. Brockman, “Efficient Worst Case Analysis of Integrated Circuits,” IEEE 1995 Custom Integrated Circuits Conf., pp. 11.4.1–4, 1995.
[32] http://www.intusoft.com/articles/converg.pdf
[33] http://www.seas.upenn.edu/~jan/spice/PSpice_CaptureGuideOrCAD.pdf
[34] L. Castaner & S. Silvester, Modeling of photovoltaic systems using Pspice (France: John Wiley & Sons, 2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top