跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘佳河
研究生(外文):Chia-Ho Pan
論文名稱:影像編解碼與可調式視訊應用之架構與演算法設計
論文名稱(外文):Architecture and Algorithm Design for Image Coding and Scalable Video Application
指導教授:陳良基陳良基引用關係
指導教授(外文):Liang-Gee Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:123
中文關鍵詞:JPEG XR可調式視訊應用層視訊標頭保護
外文關鍵詞:JPEG XRScalable Video Coding(SVC)APEC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
感測器、顯示裝置、通訊系統、運算引擎隨著半導體製程的演進而快速發展,伴隨著影像與視訊標準的進步,使得影像與視訊應用無所不
在的融入了我們的日常生活中。高壓縮率影像與視訊標準以及高畫面品質的要求隨著多媒體應用發展也越來越重要,高畫質、高壓縮率、低運算量以及低生產成本成為消費性電子產品應用的重要指標,而這些要求通常需要好的演算法與硬體架構設計來做畫面品質、運算資源及資料產出量之間的取捨。因此,有效率的演算法與硬體架構設計技術發展可以促進多媒體新技術與新應用的演進。在本篇論文中,我們主要分為兩部分的研究:從硬體架構層面來研究新影像標準實現以及從演算法層面進行可調式視訊應用研究。
在論文的第一部分針對JPEG XR 編碼提出了系統分析以及單晶片編碼器的硬體架構。我們實現了可支援4:4:4 無失真/失真功能設計,且能夠即時的處理1920×1080p 的編碼器單晶片,在此設計中,模組間的時間排程與管線化作了有效的設計,我們用了內部記憶體來避免大量外部記憶體存取的動作,另外,為了最佳化與充分的利用矽晶圓的單位面積,我們提出資料重複技術來解決模組間存取資料範圍不同的問題,而在最高運算量且資料相依性最高的熵編碼模組,我們分析資料前後相關性並使用次管線排程的方式來增加執行速度與資料產出量,我們也提出多產出率處理架構來減少熵模組處理時間。藉由提出的系統排程、高度的平行化、演算法最佳化、以及模組管線化等技術,我們實作的面積9.61mm2 JPEG XR 編碼晶片能夠達到1 億8800 萬像素/秒的運算能力,此晶片採用0.18um 製程。本晶片為目前文獻上第一個JPEG XR 單晶片編碼器設計。
在本論文第二部份研究中,我們針對可調式視訊應用不同的考量點提出相關的演算法設計。在異質性網路中做視訊傳輸時會遇到各式各樣
不同規格的應用需求,這是由於使用者端有各種不同使用設備的限制或是不同使用者有其不同的使用習慣,在這種情況下,傳統的單一維度可調式方法已經無法滿足這樣的應用需求,視訊串流需要更多不同可調維度如空間、時間與清晰度同時組合的彈性來達到可調式視訊應用需求,但是彈性越大,要找到符合使用者主觀使用特性的視訊串流就越困難,在論文此部份我們提出一個多維度可調式視訊串流的選擇方法,在此方法中,我們提出一個客觀性推衍模型來當作多維度可調式視訊串流選擇模型,此模型在多維度視訊應用中可以有效符合使用者於各個維度上的主觀使用特性偏好。另外,我們提出軟決定的方法來克服使用者於多維度視訊應用中的使用者不確定因素,透過我們提出的方法,在多維度可調式視訊應用中,我們提出的方法可以有效將使用者主觀使用特性符合率由75%提高至94%,而且我們的演算法都是在壓縮串流上做運算,因此不會有太多額外的運算。
在即時可調式視訊串流應用中,如何解決有傳輸上的錯誤也是非常重要的問題,在此部份我們提出一個不用改變現行標準架構的應用層視訊標頭保護方法,此方法可以運用於各個影像與視訊標準中,也由於我們是在應用層中做此設計,我們提出的方法也可以實現於各種網路傳輸環境,此外,我們設計上也考慮了傳輸通道的情況並提供減少傳輸編解碼保護位元數的方法,透過提出的演算法,在實際傳輸網路上的視訊串流畫質將可明顯優於傳統傳輸方法。
總而言之,我們提出的技術能夠實現在許多生活應用與實際系統中,我們由衷地希望我們的研究成果能對人類日常生活的多媒體應用上帶來貢獻。
Multimedia applications are more and more popular in our life as the rapid progress of image sensor, display devices, communication, VLSI manufacture, computing engines, and image/video coding standards. Many advanced multimedia applications require image and video compression technology with higher compression ratio and better visual quality. High quality, high compression rates of digital image/video, and low computational cost are important factors in many areas of consumer electronics. These requirements usually involve computationally intensive algorithms imposing trade-offs between quality, computational resources, and throughput. Hence, the researches of hardware-oriented algorithms and VLSI architectures push the progress of multimedia applications. This dissertation has two main purposes: to propose VLSI architectures for efficient implementation of the image coding systems and to provide algorithm designs of scalable video application systems for the emerging requirement in real multimedia applications.
In the first part, we describes system analysis and architecture design of JPEG XR encoder. We proposed two chip implementations for JPEG XR image coding.Firstly, a 4:4:4 lossless/lossy symbol-based JPEG XR encoder is implemented on a 3.222 mm$^{2}$ with 90nm CMOS technology dissipating 95.7 mW at 0.9 V and 62.5 MHz. It is capable of processing 34.1 Mega samples within one second for lossless/lossy coding. The timing schedule and pipelining of color conversion, pre-filter, PCT and quantization modules are well designed. In order to prevent accessing the coefficients from off-chip memory,
an on-chip SRAM is designed to buffer the coefficients. We use well arranged sub-pipeline timing schedule for the implementation of the entropy encoding module to increase the throughput about 3 times. This design is dedicated for the DSC and digital frame application. The another chip design is channel parallel JPEG XR encoder. An five-stage block pipelined architecture with proposed system scheduling supports real-time 4:4:4 full-HD(1920x1080p) lossless/lossy processing ability. We analysis the dependency of RLE and Flexbits modules and adopt multi-symobl architecture to reduce the processing cycles. It is implemented on 9.61 mm$^{2}$ with 0.18 um CMOS technology and 81 MHz. The 187 Mega samples/sec throughput are achieved by proposed system scheduling, high degree of parallelism, reducing memory access, and algorithmic optimization. In addition, the processing ability is six times larger than our first work. Our proposed architecture is the worldwide first reported JPEG XR single-chip encoder.
The second part of this dissertation describes two algorithm designs for scalable video application which is emerging recently. When transmitting video over a heterogeneous network, it is required to satisfy the different constraints due to the preferences and equipment selections of different users. More than one video parameters include spatial frame size, temporal frame rate, and visual quality resolution are utilized to provide better scalability in scalable video application. It is difficult to find the relationship between the various video parameter settings and user preferences. In this part, we propose a multidimensional adaptation selection scheme to match the preferences of the video parameters for each user. This scheme characterizes the relationship between spatial, temporal and SNR scalabilities according to the subjectiveness of each user. An objectivity-derived emulation scheme is used in video adaptor to realize the selection of multidimensional adaptation. Therefore, our proposed video adaptor provides more appropriate adjustments of the video parameters for each user. After objectivity-derived scheme is derived, optimization fitting of proposed model for each user is the next important things. We proposed soft-decision optimization scheme to overcome the uncertainty of the user, which not discussed in presented literatures. Besides, our proposed video adaptor identifies the key frames in sequence to utilize the bandwidth in a more efficient way and achieve better subjective visual quality. The proposed method improves the average accuracy prediction rate from 75% to 94% in overall available adaptation bandwidth of test sequences. The experimental results show that the video adaptor provides high consistence of quality between the adjusted video stream and the expectation of users. Because we analyze the user preference according to the compress-domain data, this scheme can be used in video proxy or gateway without much computation overhead.
To satisfy the urgent of providing real-time video service over error prone network in scalable video transmission systems, how to protect the video streaming to have better visual quality is also an important issue. We propose a way to protect the video header information in application layer without modifying standardized syntax. Because we will not modify the syntax of the existed standard and the redundant bits can be embedded in the bitstream, this scheme can be used in combination with any video codecs. Our method can be applied for the environment of video streaming system that we practically used today, since the effort that we made is confined in the application layer. Beside, we also consider channel condition of wireless transmission and propose a way to reduce redundant bits used in channel coding. By doing this, the bitstream can be simply transmitted over practical network such as mobile TV in scalable video streaming application and the reconstructed picture quality outperforms the original one.
In brief, we believe that with the technologies proposed in this dissertation can be realized in many real practical systems. We sincerely hope that our research contributions can create a new era for digital multimedia life.
Abstract xi
1 Introduction 1
1.1 Evolution of Multimedia Systems . . . . . . . . . . . . . . . . . . 1
1.1.1 Development of Image Compression . . . . . . . . . . . . . 2
1.1.2 Development of Video Compression . . . . . . . . . . . . . 4
1.2 Trend of Multimedia Coding Standards . . . . . . . . . . . . . . . 7
1.3 Design Purpose and Motivation . . . . . . . . . . . . . . . . . . . . 10
1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 12
I Architecture Design of JPEG XR Encoder 15
2 Fundamentals of JPEG XR Image Coding Standard 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Image and Bitstream Structures . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Image Partition and Windowing . . . . . . . . . . . . . . . 24
2.2.2 Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Bistream Modes . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Color Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Pre-Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Photo Core Transform . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8 Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.8.1 Adaptive Scan Order . . . . . . . . . . . . . . . . . . . . . 33
2.8.2 Run-Level Coding . . . . . . . . . . . . . . . . . . . . . . 34
2.8.3 Huffman Coding . . . . . . . . . . . . . . . . . . . . . . . 34
3 Analysis and Architecture Design of JPEG XR Encoder 39
3.1 Profiling and Analysis of JPEG XR Coding System . . . . . . . . . 39
3.2 Memory Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Arechitecture Design of Symbol-Based JPEG XR Encoder Modules 42
3.3.1 Color Conversion, Pre-filter . . . . . . . . . . . . . . . . . 43
3.3.2 PCT and Quantization . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.4 Entropy Encoding . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Arechitecture Design of Channel Parallel JPEG XR Encoder . . . . 49
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.1 Chip Analysis of Symbol-Based JPEG XR Encoder . . . . . 54
3.5.2 Chip Implementation of Channel Parallel JPEG XR Encoder 57
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
II Algorithm Design of Scalable Video Applications 61
4 Quality-of-Experience Video Adaptation for Serving Scalable Video Applications
63
4.1 Scalable Video Coding . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.1 Temporal Scalability . . . . . . . . . . . . . . . . . . . . . 67
4.1.2 Spatial Scalability . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 SNR (Quality) Scalability . . . . . . . . . . . . . . . . . . 68
4.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.1 Concepts of Scalable Video Application . . . . . . . . . . . 70
4.2.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Design Considerations of Multidimensional Video Adaptation . . . 73
4.4 Multidimensional Video Adaptation Model . . . . . . . . . . . . . 76
4.4.1 Objectivity-Derived Model for Multidimensional Selection . 76
4.4.2 Efficient Bandwidth Utilization . . . . . . . . . . . . . . . 80
4.5 Soft Decision Algorithm for Multidimensional Selection . . . . . . 81
4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5 Application Layer Error Correction Scheme for Video Header Protection
on Wireless Network 93
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Review of Header Protection Schemes . . . . . . . . . . . . . . . . 95
5.3 Header Protection Scheme in Application Layer . . . . . . . . . . . 97
5.3.1 Error Correction in Application Layer . . . . . . . . . . . . 98
5.3.2 Transmission Rate Reduction . . . . . . . . . . . . . . . . 99
5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6 Conclusion 109
6.1 Principal Contributions . . . . . . . . . . . . . . . . . . . . . . . . 109
6.1.1 Architecture Design of JPEG XR Encoder . . . . . . . . . . 109
6.1.2 Algorithm Design of Scalable Video Application . . . . . . 110
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Bibliography 113
[1] Stephen B. Wicker, Error Control Systems for Digital Communication and
Storage, pp. 330, Prentice Hall International, Inc., 1995.
[2] Weidong Kou, Digital image compression—algorithms and standards,
Kluwer academic, Norwell, MA, 1995.
[3] Yun Q. Shi and Huifang Sun, Eds., Image and Video Compression for Multimedia
Engineering, CRC Press, Boca Raton, Florida, 2000.
[4] R. Fano, “Transmission of information,” Research Lab. Electronics, Tech.
Rep. 65, MIT, 1949.
[5] “JPEG XR image coding system - Part 2: Image coding specification,”
ISO/IEC 29199-2 and ITU-T Recommendation T.832, July 2009.
[6] ,”Windows Media Photo, http://www.microsoft.com/whdc/xps/wmphoto.mspx,
Microsoft, 2007.
[7] B. Crow, “Windows media photo: A new format for end-to-end digitalimaging,”
in Windows Hardware Engineering Conference, 2006.
[8] D. D. Giusto and T. Onali, “Data compression for digital photography: Performance
comparison between proprietary solutions and standards,” in IEEE
Intl. Conf. on Consumer Electron., Jan. 2007, pp. 1–2.
[9] S.Wee, B. Shen, and J. Apostolopoulos, “Compressed-domain video processing,”
Streaming Media Systems Group, Hewlett-Packard Laboratories, Oct.
2002.
[10] Information Technology - Coding of Moving Pictures and Associated Audio
for Digital Storage Media at up to about 1.5 Mbit/s - Part 2: Video, ISO/IEC
11172-2, 1993.
[11] Information Technology - Generic Coding of Moving Pictures and Associated
Audio Information: Video, ISO/IEC 13818-2 and ITU-T Recommendation
H.262, 1996.
[12] Information Technology - Coding of Audio-Visual Objects - Part 2: Visual,
ISO/IEC 14496-2, 1999.
[13] Joint Video Team, Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification, ITU-T Recommendation H.264
and ISO/IEC 14496-10 AVC, May 2003.
[14] T. Wedi, “Motion compensation in H.264/AVC,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, pp. 577–586, July 2003.
[15] T. Wiegand and B. Girod, Multi-Frame Motion-Compensated Prediction for
Video Transmission, 2002.
[16] T. Wiegand, X. Zhang, and B. Girod, “Long-term memory motioncompensated
prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 9,
pp. 70–84, Feb. 1999.
[17] M. Flierl and B. Girod, “Generalized B pictures and the draft JVT/H.264
video compression standard,” IEEE Trans. Circuits Syst. Video Technol., vol.
13, pp. 587–597, July 2003.
[18] M. Flierl, T. Wiegand, and B. Girod, “A locally optimal design algorithm
for block-based multi-hypothesis motion-compensated prediction,” in Proc.
of Data Compression Conf., 1998, pp. 239–248.
[19] H. S. Malvar, A. Hallapuro, M. Karczewicz, and Louis Kerosfsky, “Lowcomplexity
transform and quantization in H.264/AVC,” IEEE Trans. Circuits
Syst. Video Technol., vol. 13, no. 7, pp. 598–603, July 2003.
[20] P. List amd A. Joch, J. Lainema, G. Bjontegaard, and M. Karczewicz, “Adaptive
deblocking filter,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no.
7, pp. 598–603, July 2003.
[21] S. Wenger, “H.264/AVC over IP,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, pp. 645–656, July 2003.
[22] T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless
environments,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp.
657–673, July 2003.
[23] Video Coding for Low Bit Rate Communication, ITU-T Recommendation
H.263, May 1996.
[24] A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G. J. Sullivan, “Performance
comparison of video coding standards using lagragian coder control,”
in Proc. of IEEE International Conference on Image Processing, 2002.
[25] J. Reichel, H. Schwarz, and M. Wien, “Working Draft 4 of ISO/IEC 14496-
10:2005/AMD3 Scalable Video Coding,” ISO/IEC JTC1/SC29/WG11 and
ITU-T SG16 Q.6, Doc. N7555, Jan. 2005.
[26] H. Schwarz, D. Marpe, and T. Wiegand, “MCTF and scalability extension of
H.264/AVC,” in Proceedings of PCS 2004, Dec. 2004.
[27] H. Schwarz, T. Hinz, H. Kirchhoffer, D. Marpe, and T. Wiegand, “Technical
description of the HHI proposal for SVC CE1,” ISO/IEC JTC1/SC29/WG11,
Oct. 2004.
[28] H. Schwarz, D. Marpe, and T. Wiegand, “Combined scalability support for
the scalable extension of H.264/AVC,” in Proceedings of ICME 2005, July
2005.
[29] H. Schwarz and T. Wiegand, “Overview of the scalable H.264/MPEG4-AVC
extension,” in Proceedings of IEEE International Conference on Image Processing
(ICIP’06), Oct. 2006.
[30] Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, “Joint Multiview
Video Model (JMVM) 8.0,” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16
Q.6, Apr. 2008.
[31] Video Codec for Audiovisual Services at p × 64 Kbit/s, ITU-T Recommendation
H.261, Mar. 1993.
[32] Video Coding for Low Bit Rate Communication, ITU-T Recommendation
H.263 version 2, Sept. 1997.
[33] Video Coding for Low Bit Rate Communication, ITU-T Recommendation
H.263 version 3, Feb. 1998.
[34] G. Sullivan, P. Topiwala, and A. Luthra, “The H.264 advanced video coding
standard : Overview and introduction to the fidelity range extensions,” in SPIE
Conference on Application of Digital Image Processing XXVII, Aug. 2004.
[35] D. Marpe and et al., “H.264/MPEG4-AVC fidelity range extensions : Tools,
profiles, performance, and application areas,” in Proc. IEEE ICIP, Sept. 2005,
vol. 1, pp. 593–596.
[36] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman, and Y. A.
Reznik, “Video coding for streaming media delivery on the internet,” IEEE
Trans. Circuits Syst. Video Technol., vol. 11, pp. 269–281, Mar. 2001.
[37] D. Wu, Y. T. Hou, W. Zhu, Y. Q. Zhang, and J. M. Peha, “Streaming video
over the internet: Approaches and directions,” IEEE Trans. Circuits Syst.
Video Technol., vol. 11, pp. 282–300, Mar. 2001.
[38] J. M. Martinez, “Mpeg 3dav ahg activities report,” Munich University of
Technology, July 2003.
[39] A. Smolic and P. Kauff, “Interactive 3-D video representation and coding
technologies,” Proc. IEEE, vol. 93, no. 1, pp. 98–110, Jan. 2005.
[40] M. Tanimoto, “Free viewpoint television - FTV,” in Proceedings of 2004
Picture Coding Symposium, Dec. 2004.
[41] D. Wu, Y. T. Hou, W. Zhu, Y. Q. Zhang, and J. M. Peha, “Streaming video
over the internet: Approaches and directions,” IEEE Trans. Circuits Syst.
Video Technol., vol. 11, no. 3, pp. 282–300, Mar. 2001.
[42] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman, and Y. A.
Reznik, “Video coding for streaming media delivery on the internet,” IEEE
Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp. 269–281, Mar. 2001.
[43] W. Li, “Overview of fine granularity scalability in MPEG-4 video standard,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no.
3, pp. 301–317, Mar. 2001.
[44] J. G. Apostolopoulos,W. T. Tan, and S. J. Wee, “Video streaming: Concepts,
algorithms, and systems,” HPL-2002-260, HP, Sept. 2002.
[45] Information Technology - Digital Compression and Coding of continuous-
Tone Still Images, ISO/IEC 10918-1 and ITU Rec. T.81 Std., 1994.
[46] “JPEG 2000 Part I,” ISO/IEC JTC1/SC29/WG1 15444-1, Mar. 2000.
[47] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L.-G. Chen, “Analysis, fast algorithm,
and VLSI architecture design for H.264/AVC intra frame coder,” IEEE
Trans. Circuits Syst. Video Technol., vol. 15, no. 3, pp. 378–401, Mar. 2005.
[48] “Text of ISO/IEC CD 29199-2,” ISO/IEC JTC1/SC29/WG1(ITU-T SG8)
N4492, 2007.
[49] A. Moskvin D. Vatolin and O. Petrov, “Windows media photo and jpeg 2000
codecs comparison,” CS MSU Graphics & Media Lab Video Group, Aug.
2006.
[50] “Press Release of the 48th WG1 Maui Meeting, 2009-04-20 to 2009-04-24,”
ISO/IEC JTC1/SC29/WG1(ITU-T SG8) N4987, Mar. 2009.
[51] “Lossless and near-lossless compression of continuous-tone still images:
Baseline,” ISO/IEC 14495-1 and ITU-T Recommendation T.87, 1998.
[52] E. L. Schwartz M. J. Gormish A. Zandi, M. Boliek and A. Keith, “Crew lossless/
lossy medical image compression,” CRC-CT-9526, RICON Tech. Report,
Sept. 1995.
[53] T. Boult M. J. Zukoski and T. Iyriboz, “A novel approach to medical image
compression,” in Int. J. Bioinformatics Research Appl., 2006, vol. 2, pp. 89–
103.
[54] C.-H. Pan, C.-Y. Chien,W.-M. Chao, S.-C. Huang, and L.-G. Chen, “Architecture
design of full HD JPEG XR encoder for digital photography applications,”
IEEE Trans. Consumer Electron., vol. 54, pp. 963–971, Aug. 2008.
[55] S. Srinivasan, C. Tu, S. L. Regunathan, and G. J. Sullivan, “Hd photo: a new
image coding technology for digital photography,” in Applications of Digital
Image Processing XXX, Proceedings of SPIE, Aug. 2007, vol. 6696.
[56] G. J. Sullivan R. Rossi S. Regunathan C. Tu S. Srinivasan, Z. Zhou and A. Roy,
“Coding of high dynamic range images in JPEG XR / HD Photo,” in Applications
of Digital Image Processing XXXI, Proceedings of SPIE, Aug. 2008,
vol. 7073.
[57] G. J. Sullivan S. Regunathan Z. Zhou D. Schonberg, S. Sun and S. Srinivasan,
“Techniques for enhancing JPEG XR / HD Photo rate-distortion performance
for particular fidelity metrics,” in Applications of Digital Image Processing
XXX, Proceedings of SPIE, Aug. 2008, vol. 7073.
[58] Seth Groder, “Modeling and synthesis of the hd photo compression algorithm,”
M.S. thesis, Rochester Institute of Technology, June 2008.
[59] I.S. Silva L.V. Agostini and S. Bampi, “Pipelined entropy coders for jpeg
compression,” in ACM Proceedings 15th Symposium on Integrated Circuits
and Systems Design, Sept. 2002, pp. 9–14.
[60] ISO/IEC JTC1, “Joint Draft 8 of SVC Amendment,” ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 Q.6, Doc. JVT-U201, Oct. 2006.
[61] ISO/IEC JTC1, “Joint Scalable Video Model 8.0,” ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 Q.6, Doc. JVT-U202, Oct. 2006.
[62] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand, “Hierarchical B pictures,”
Joint Video Team, Doc. JVT-P014, July 2005.
[63] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand, “Analysis of hierarchical
B pictures and MCTF,” in Proc. IEEE International Conference on
Multimedia and Expo, 2006, pp. 1929–1932.
[64] E. Francois and J. Vieron, “Extended spatial scalability: a generalization
of spatial scalability for non-dyadic configurations,” in Proceedings of ICIP
2006, Oct. 2006.
[65] H. Schwarz, T. Hinz, D. Marpe, and T. Wiegand, “Constrained inter-layer
prediction for single-loop decoding in spatial scalability,” in Proceedings of
ICIP 2005, Sept. 2005.
[66] ISO/IEC 14 496-2/FPDAM4, “Coding of Audio-Visual Objects, Part-2 Visual,
Amendment 4: Streaming Video Profile,” ISO/IEC 14 496-2/FPDAM4, July
2000.
[67] S.-F. Chang and A. Vetro, “Video adaptation: concepts, technologies, and
open issues,” Proc. IEEE, vol. 93, no. 1, pp. 148–158, Jan. 2005.
[68] W. Li, F. Ling, and X. Chen, “Fine granularity scalability in MPEG-4 for
streaming video,” in Proceedings of IEEE International Symposium on Circuits
and Systems (ISCAS), 2000, pp. 299–302.
[69] C.-W. Lin, Y.-C. Chen, and M.-T. Sun, “Dynamic region of interest transcoding
for multipoint video conferencing,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 10, pp. 982–992, Oct. 2003.
[70] C. Christopoulos A. Vetro and H. F. Sun, “Video transcoding architectures
and techniques: an overview,” IEEE Signal Processing Mag., vol. 20, no. 2,
pp. 18–29, Mar. 2003.
[71] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proc. IEEE,
vol. 93, no. 1, pp. 84–97, Jan. 2005.
[72] W. Li, “Overview of fine granularity scalability in MPEG-4 video standard,”
IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3, pp. 301–317, Mar.
2001.
[73] F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine
granularity scalable video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 11, no. 3, pp. 332–344, Mar. 2001.
[74] D. Taubman and A. Zakhor, “Multirate 3-d subband coding of video,” IEEE
Trans. Image Processing, vol. 3, no. 5, pp. 572–588, Sept. 1994.
[75] Z. Xiong B. Kim and W. A. Pearlman, “Low bit-rate scalable video coding
with 3-d set partitioning in hierarchical trees (3-DSPIHT),” IEEE Trans. Circuits
Syst. Video Technol., vol. 10, no. 8, pp. 1374–1387, Dec. 2000.
[76] P. Chen and J. W. Woods, “Bi-directional mc-ezbc with lifting implementation,”
IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 10, pp. 1183–
1194, Oct. 2004.
[77] “Scalable Video Coding Working Draft 2,” ISO/IEC JTC1/SC29/WG11 and
ITU-T SG16 Q.6, JVT-O201, Apr 2005.
[78] T. C. Thang, Y. J. Jung, and Y. M. Ro, “Effective adaptation of multimedia
documents with modality conversion,” Signal Processing: Image Communication,
vol. 20, pp. 413–434, June 2005.
[79] Y. Wang, M. van der Schaar, S. F. Chang, and A. C. Loui, “Classificationbased
multidimensional adaptation prediction for scalable video coding using
subjective quality evaluation,” IEEE Trans. Circuits Syst. Video Technol., vol.
15, no. 10, pp. 1270–1279, Oct. 2005.
[80] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their performance,”
IEEE Trans. Commun., vol. 43, no. 12, pp. 2959–2965, Dec. 1995.
[81] S. Winkler, “A perceptual distortion metric for digital color video,” Proc. of
SPIE, vol. 3644, pp. 175–184, Jan. 1999.
[82] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans. Image
Processing, vol. 13, no. 4, pp. 600–612, Apr. 2004.
[83] G. Zhai, J. Cai, W. Lin, X. Yang, and W. Zhang, “Three dimensional scalable
video adaptation via user-end perceptual quality assessment,” IEEE Transaction
on Broadcasting, vol. 54, pp. 719–727, Sept. 2008.
[84] M.-H. Hsiao, Y.-W. Chen, H.-T. Chen, K.-H. Chou, and S.-Y. Lee, “Contentaware
video adaptation under low-bitrate constraint,” EURASIP Journal on
Advances in Signal Processing, June 2007.
[85] J. Nam, M. R. Yong, Y. Huf, and M. Kim, “Visual content adaptation according
to user perception characteristics,” IEEE Transaction on Multimedia, vol.
7, pp. 435–445, June 2005.
[86] A.-Y.Wu, I-H. Lee, and C.-S.Wu, “Angle quantization approach for lattice iir
filter implementation and its trellis de-allocation algorithm,” Apr. 2003, vol. 2,
pp. 673–676.
[87] J. W. Kang T. C. Thang, D. S. Lee and Y. M. Ro, “Optimal multi-layer adaptation
of svc video over heterogeneous environments,” in IEEE Intl. Conf.
Wireless Commu. Mobil Compu., Aug. 2007, pp. 308–313.
[88] “Joint Scalable Video Model(JSVM) 2.0,” ISO/IEC JTC1/SC29/WG11 and
ITU-T SG16 Q.6, Doc. JVT-O203, Apr. 2005.
[89] “Methodology for the subjective assessment of the quality of television pictures,”
Recommendation ITU-R BT.500-10, jun 2000.
[90] G.-S. Yu, M. M.-K. Liu, and M.W. Marcellin, “Pocs-based error concealment
for packet video using multi-frame overlap information,” IEEE Trans. Circuits
Syst. Video Technol., vol. 8, no. 4, pp. 422–434, Aug. 1998.
[91] Y. J. Chung, J. W. Kim, and C.-C. J. Kuo, “Real-time streaming video with
adaptive bandwidth control and dct-based error concealment,” IEEE Trans.
Circuits Syst. II, vol. 46, no. 7, pp. 951–956, July 1999.
[92] H. Sun and W. Kwok, “Concealment of damaged block transform coded images
using projections onto convex sets,” IEEE Trans. Image Processing, vol.
4, no. 4, pp. 470–477, Apr. 1995.
[93] V. Parthasarathy, J.W. Modestino, and K. S. Vastola, “Design of a transport
coding scheme for high-quality video over atm networks,” IEEE Trans. Circuits
Syst. Video Technol., vol. 7, no. 2, pp. 358–376, Apr. 1997.
[94] ETS 300 401, Radio broadcast systems; Digital Audio Broadcasting (DAB) to
mobile, portable and fixed receivers, European Telecommunication Standard
Institute (ETSI), May 1997.
[95] M.G. Martini and M.Chiani, “Proportional unequal error protection for mpeg-
4 video transmission,” in IEEE Intl. Conf. on Communications, June 2001,
vol. 4, pp. 1033 – 1037.
[96] K. N. Ngan and C. W. Yap, Signal Recovery Techniques for Image and Video
Compression and Transmission, Kluwer Academic Publishers, 2002.
[97] L. P. Kondi, F. Ishtiaq, and A. K. Katsaggelos, “Joint source-channel coding
for scalable video,” in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, B. Vasudev, T. R. Hsing, A. G. Tescher, and R. L.
Stevenson, Eds., Apr. 2000, vol. 3974 of Presented at the Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference, pp. 324–335.
[98] MPEG Video Group, The MPEG-4 Video Standard Verification Model version
18.0, ISO/IEC JTC 1/SC 29/WG11 N3908, 2001.
[99] C. Bormann, L. Cline, G. Deisher, T. Gardos, C. Maciocco, D. Newell, J. Ott,
G. Sullivan, S.Wenger, , and C. Zhu, RTP payload format for the 1998 version
of ITU-T Rec. H.263 video (H.263+), ITU-T Recommendation H.263 Video
(H.263+), May 1999.
[100] T.Y. Chung, M.S. Hong, Y.N. Oh, D.H. Shin, and S.H. Park, “Digital image
stabilization with sub-image phase correlation based global motion estimation,”
IEEE Trans. Consumer Electron., vol. 44, pp. 895–901, 1998.
[101] Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, H.264/AVC Reference
Software JM9.6, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top