跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周鈺傑
研究生(外文):Yu-Chieh Chou
論文名稱:銻磷砷化銦/砷化鎵光學與電氣傳導特性研究
論文名稱(外文):Optical and electrical properties of InAsPSb bulk epilayers grown on GaAs substrates
指導教授:林浩雄林浩雄引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:61
中文關鍵詞:MBEInAsPSbMott transitionconfiguration coordination model
外文關鍵詞:銻磷砷化銦Mott轉變結構協調模型
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中,我們研究以氣態分子束磊晶成長一系列不同成份銻磷砷化銦塊材之光激發特性。在As成份<0.65之四元樣品中,樣品之PL放光譜型為高斯曲線分佈,我們可以利用結構協調模型(configuration coordination model)解釋深階能階放光;而在As成份為0.65樣品,InAs0.647P0.264Sb0.089,其低溫PL為帶尾能階復合放光;當溫度升至高溫時,PL為導電帶至價電帶的放光。
此外,我們還研究銻磷砷化銦四元合金和砷化銦化合物半導體材料的電性。我們以分子束磊晶技術成長無摻雜、鈹摻雜的銻磷砷化銦(Be-doped InAsPSb)、以及鈹摻雜的砷化銦(Be-doped InAs)。然後以20~300 K變溫霍爾效應量測(Hall effect)來分析這些樣品的電氣傳導特性。我們以Mott criterion以及two-band conduction,解釋載子濃度在高溫時隨溫度而下降的特性以及在<100 K時的無冷凝現象(non- freeze-out behavior)。此外我們也探討在這些樣品中遷移率(mobility)與散射機制(scattering)之間的關係。我們利用一個退化半導體解離雜質散射模型來說明低溫時不隨溫度改變的遷移率。而在高溫時,我們發現合金散射與晶格聲子散射分別主宰了InAsPSb和InAs的遷移率。
We report a systematic investigation on the photoluminescence (PL) of quaternary InAsPSb grown on GaAs substrates by gas-source molecular beam epitaxy (GSMBE). When the As composition < 0.65, samples show a Gaussian-like PL band, which can be illustrated by a configuration coordination model. The sample with the highest As composition, InAs0.647P0.264Sb0.089, however, shows a PL transition dominated by band tail state recombination at low temperature. As the temperature increases, band-to-band recombination is identified from its PL spectra.
We also have studied the electrical properties of undoped and Be-doped InAsPSb and Be-doped InAs in the temperature range 20-300 K using Hall effect measurement. The carrier concentration slightly decreases with temperature in high temperature region and does not freeze out as the temperature is below 100 K. Mott transition and two-band conduction are attributed to the observed behaviors. The low temperature mobility in all samples is nearly temperature-invariant, which is ascribed to an ionized impurity scattering mechanism for degenerate semiconductors. Alloy scattering and lattice scattering are the dominant scattering mechanism of InAsPSb and InAs at high temperatures, respectively.
中文摘要I
AbstractIII
目錄V
附表索引VII
附圖索引IX
第一章 序論1
第二章 實驗架構與量測方法7
2.1 銻磷砷化銦與砷化銦塊材的成長7
2.2 PL量測系統8
2.3 van der Pauw 量測9
2.4 Hall effect 量測9
2.5 電子微分析法(electron-probe microanalysis system/EPMA)10
2.6 X光繞射量測11
第三章 四元材料的PL光學分特性分析15
3.1 四元材料能隙的計算15
3.2 四元材料的X-ray量測結果16
3.3 四元材料在不同成份之變溫PL光學特性16
第四章 InAsPSb和InAs電氣傳導特性結果35
4.1 四元InAsPSb和二元InAs之濃度分析.35
4.2 四元InAsPSb和二元InAs之遷移率分析40
第五章 結論53
參考文獻55
[1] J. Wagner, C. H. Mann, M. Rattunde, and G. Weimann, “Infrared semiconductor
lasers for sensing and diagnostics,” Appl. Phys. A, vol. 78, pp. 505-512, 2004.
[2] X. Y. Gong, H. Kan, T. Makino, K. Watanabe, T. Lida, H. Suzuki, M. Aoyama, and
T. Yamagughi, “Light emitting diodes fabricated from liquid phase epitaxial InAs/
InAsxP1-x-ySby/ InAsxP1-x-ySby and InAs/ InAsxP1-x-ySby Multi-layers,” Cryst. Res.
Technol. vol. 35, pp. 549-555, 2000.
[3] A. Krier and Y. Mao, “2.5μm light-emitting diodes in InAs0.36Sb0.20P0.44/InAs for HF
detection,” IEE. Proc. Optoelectron, vol. 144, pp. 355-359, 1997.
[4]H. K. Choi, Long-wavelength infrared semiconductor lasers, Wiley-Interscience,
2004.
[5]E. R. Gertner, D. T. Cheung, A. M. Andrews, and J. T. Longo, “Liquid phase
epitaxtal growth of InAsxSbyP1-x-y layers on InAs,” J. Electron. Mater., vol. 6, pp.
163-172, 1977.
[6] N. Kobayashi, and Y. Horikoshi, “DH lasers fabricated by new III-V semiconductor
material InAsPSb,” Jpn. J. Appl. Phys., vol. 19, pp. L641-L644, 1980.
[7]T. Fukui, and Y. Horikoshi, “Organometallic VPE growth of InAs1-x-ySbxPy on
InAs,” Jpn. J. Appl. Phys., vol. 20, pp. 587-591, 1981.
[8] H. Mani, A. Joullie, G. Boissier, E. Tournie, F. Pitard, A. M. Joullie, and C. Albert,
“New III-V double-heterojunction laser emitting near 3.2μm,” Electron. Lett., vol.
24, pp. 1542-1543, 1988.
[9] N. P. Esina, N. V. Zotova, B. A. Matveev, L. D. Neuimina, N. M. Stus’, and G. N.
Talalakin, “Characteristics of the luminescence of plastically deformed
InAsSbP/InAs heterostructures,” Sov. Phys. Semicond., vol. 19, pp. 1250-1252,
1985.
[10] B. A. Matveev, V. I. Petrov, N. M. Stus’, G. N. Talalakin, and A. V. Shabalin,
“Cathodoluminescence of graded-gap epitaxial InAsSbP/InAs structures,” Sov.
Phys. Semicond., vol. 22, pp. 788-790, 1988.
[11] M. Aidaraliev, N. V. Zotova, S. A. Karandashev, and N. M. Stus’, “Temperature dependence of the luminescence emitted by indium arsenide and by InAsSbP and InGaAs solid solutions,” Sov. Phys. Semicond., vol. 23, pp. 371-373, 1989.
[12] M. Sh. Aidaraliev, G. G. Zegrya, N. V. Zotova, S. A. Karandashev, B. A. Matveev, N. M. Stus’, and G. N. Talalakin, “Nature of the temperature dependence of the threshold current density of long-wavelength InAsSbP/InAs and InAsSbP/InAsSb double-heterostructure lasers,” Sov. Phys. Semicond., vol. 26, pp. 138-143, 1992.
[13] H. Mani, E. Tournie, J. L. Lazzari, C. Alibert, A. Joullie, and B. Lambert, “Liquid phase epitaxy and characterization of InAs1-x-ySbxPy on (100) InAs,” J. Cryst. Growth, vol. 121, pp. 463-472, 1992.
[14] G. Tsai, D. L. Wang, C. E. Wu, C. J. Wu, Y. T. Lin, H. H. Lin, “InAsPSb quaternary alloy grown by gas source molecular beam epitaxy,” J. Cryst. Growth, vol. 301-302, pp. 134-138,2007.
[15]A. Krier, “Room-temperature InAsxSbyP1-x-y light-emitting diodes for CO2 detection at 4.2μm,” Appl. Phys. Lett., vol. 56, pp. 2428-2429, 1990.
[16] M Aydaraliev, M. S. Bresler, O. B. Gusev, S. A. Karandashov, B. A. Matveev, M. N. Stus’, G. N. Talalakin and N. V. Zotova, “Radiation recombination in InAsSb/InAsSbP double heterostructures,” Semicond. Sci. Technol., vol. 10, pp. 151-156, 1995.
[17] A. Krier and M. Fisher, “Comparison of light emission from room temperature light emitting diodes with InAs active regions grown by LPE,” IEE. Proc. Optoelectron, vol. 144, pp. 287-294, 1997.
[18] A. Krier and V. V. Sherstnev, “Powerful interface light emitting diodes for methane gas detection,” J. Phys. D: Appl. Phys., vol. 33, pp. 101-106, 2000.
[19] X. Y. Gong, T. Yamaguchi, H. Kan, T. Makino, T. Iida, T. Kato, M. Aoyama, Y. Hayakawa and M. Kumagawa, “Room temperature InAsxP1-x-ySby/InAs photodetectors with high quantum efficiency,” Jpn. J. Appl. Phys., vol. 36, pp. 2614-2616, 1997.
[20] A. Stein, A. Behres, K. Heime, A. Wilk, P. Christol, A. Joullie, M. Brozicek, E. Huicius, T. Simecek, S. Rushworth, L. Smith and M. Ravetz, “InAs(P,Sb)/InAsSbLEDs emitting in the 3-4 μm range at room temperature,”11th International Conference on Indium Phosphide and Related Materials, pp. 95-98, 1999.
[21] P. Christol, P. Bigenwald, A. Wilk, A. Joullie, O. Gilard, H. Carrere, F. Lozes-Dupuy, A. Behres, A. Stein, J. Kluth, K. Heime and E. M. Skouri “InAs/lnAs(P,Sb) quantum-well laser structure for the midwavelength infrared region,” IEE. Proc. Optoelectron, vol. 147, pp. 181-187, 2000.
[22] A. Krier, Z. Labadi, and A. Hammiche, “InAsSbP quantum dots grown by liquid phase epitaxy,” J. Phys. D: Appl. Phys., vol. 32, pp. 2587-2589, 1999.
[23] H. H. Gao and A. Krier, V. V. Shertev, “Room-temperature InAs0.89Sb0.11 photodetectors for CO detection at 4.6 μm,” Appl. Phys. Lett., vol. 77, pp. 872-874, 2000.
[24] S. S. Kizhayev, N. V. Zotova, S. S. Molchaanov, B. V. Pushnyi, Yu. P. Yakovlev, “Powerful InAsSbP/InAsSb light emitting diodes grown by MOVPE,” J. Cryst. Growth, vol. 248, pp. 296-300, 2003.
[25] M. Yin, A. Krier, S. Krier, R. Jones and P. Carrington, “Mid-infrared diode lasers for free space optical communications,” Proc. of SPIE, 6399, pp. 63990C-1 - 63990C-6, 2006.
[26] B. Lane and M. Razeghi, “High-power electrically injected mid-infrared interband lasers grown by LP-MOCVD,” J. Cryst. Growth, vol. 221, pp. 679-682, 2000.
[27] C. J. Wu, G. Tsai, and H. H. Lin, “Band alignment of InAs1-¬xSbx (0.05[28] I. C. Chen , Master thesis, National Taiwan University , 2008.
[29] C. J. Wu, G. Tsai, and H. H. Lin, “Band alignment of InAsSb/ InAsPSb multiple quantum wells grown by molecular beam epitaxy,” OPT, 2007.
[30] M. Gudeny and J. Piprek, “Material parameters of quaternary III–V semiconductors for multilayer mirrors at 1.55 μm wavelength,” Modelling Simul. Mater. Sci. Eng., vol. 4, pp. 349-358, 1996.
[31] E. H. Reihlen, M. J. Jou, Z. M. Fang, and G. B. Stringfellow, “Optical absorption and emission of InP1-xSbx alloys,” J. Appl. Phys., vol. 68, pp. 4604-4609, 1990.
[32] Fang, Z. M., K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” J. Appl. Phys., vol. 67, pp. 7034-7039, 1990.
[33] Littler, C. L., D. G. Seller, “Temperature dependence of the energy gap of InSb using nonlinear optical techniques,” Appl. Phys. Lett., vol. 46, pp. 986-988, 1985.
[34] V. Swaminathan and A. T. Macrander, Materials Aspects of GaAs and InP Based Structures, Prentice Hall, pp. 18, 1991
[35] D. L. Wang , Master thesis, National Taiwan University , 2007.
[36] F. E. Williams and M. H. Hebb, “Theoretical Spectra of Luminescent solids,” Phys. Rev., vol. 84, pp1181-1183, 1951.
[37] S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence Transitions in ZnS crystals, ” J. Phys. Soc. Jpn., vol. 19, pp1157-1167, 1964.
[38] G. Tsai, D. L. Wang, H. H. Lin, “Photoluminescence of InAs0.04P0.67Sb0.29, ” J. Appl. Phys., vol. 104, pp. 023535, 2008.
[39] S. F. Yoon, Y. B. Miao, K. Radhakrishnan, and H. L. Duan, “The effect of Si doping in In0.52Al0.48As layers grown lattice matched on InP substrates,” J. Appl. Phys., vol. 78, pp. 1812-1817, 1995.
[40] S. M. Olsthoorn, F. A. J. M. Driessen, A. P. A. M. Eijkelenboom, and L. J. Giling, “Photoluminescence and photoluminescence excitation spectroscopy of Al0.48In0.52As,” J. Appl. Phys., vol. 73, pp. 7798-7803, 1993.
[41] M. Dinu, J. E. Cunningham, F. Quochi, and J. Shah, “Optical properties of strained antimonide-based heterostructures,” J. Appl. Phys., vol. 94, pp. 1506-1512, 2003.
[42] G. E. Stillman, and C. M. wolfe, “Electrical Characterization of Epitaxial Layers”, Thin Solid Films, vol. 31, pp. 69-88, 1975.
[43] E. F. Schubert, in Doping in III-V Semiconductors, Cambridge [England]; New York, NY, USA: Cambridge University Press, pp. 34-35, 1993.
[44] P. P. Edwards, and C. N. R. Rao, in Metal-insulator transitions revisited, London, UK; Bristol, PA, USA: Taylor & Francis, 1995.
[45] A. Krier and Y. Mao, “Electrical transport properties and photoluminescence of lattice-matched InAs0.9 Sb0.09 on GaSb grown by liquid-phase epitaxy”, Semicond. Sci. Technol, vol. 10, pp. 930-936, 1995.
[46] V. Swaminathan, and A. T. Macrander, “Materials aspects of GaAs and InP based structures,” Prentice Hall, Englewood Cliffs, N.J, pp.19, 1991.
[47] V. Swaminathan, and A. T. Macrander, “materials aspects of GaAs and InP based structures,” Prentice Hall, Englewood Cliffs, N.J, pp.21, 1991.
[48] S. P. Li, W. F. Love, and S. C. Miller, “Electron shielding in n-InSb”, Phys. Rev., vol. 162, pp. 728-730, 1967.
[49] P. P. Debye, and E. M. Conwell, “Electrical properties of N-type Germanium”, Physical Review, vol. 93, pp. 693-706, 1954.
[50] W. T. Tsang and E. F. Schubert, “Doping in semiconductors with variable activation energy”, Appl. Phys. Lett, vol. 60, pp. 115-117, 1992.
[51] E. A. Imhoff, M. I. Bell, and R. A. Porman, “Hot photoluminescence in beryllium-doped gallium arsenide”, Solid State Communications, vol. 54, pp. 845-848, 1985.
[52] D. J. Ashen, P. T. J. Hurle, J. B. Mullin, and A. M. White, “The incorporation and characterization of acceptors in epitaxial GaAs”, J. Phys. Chem. Solids, vol.36. pp. 1041-1053, 1975.
[53] Y. Kawamura, H. Asahi, and H. Nagai, “Electrical and optical properties of Be-doped InP grown by molecular beam epitaxy”, J. Appl. Phys, vol. 54, pp. 841-846, 1983.
[54] J. D. Wiley, Semiconductors and Semimetals, vol. 10, Ch 2. 1975.
[55] Vincent, W. L. Chin, R. J. Egan, and T. L. Tansley, “ Electron mobility in InAs1-xSbx and the effect of alloy scattering”, J. Appl. Phys, vol. 69, pp. 3571-3577, 1991.
[56] D. M. Szmyd, M. C. Hanna, and A. Majerfeld, “heavily doped GaAs:Se. II. electron mobility”, J. Appl. Phys, vol. 68, pp. 2376-2381, 1990.
[57] S.-I. Kim, C.-S. Son, M.-S. Lee, Y. Kim, M.-S. Kim and S.-K. Min, “Temperature dependent electrical properties of heavily carbon-doped GaAs grown by low-pressure metalorganic chemical vapor deposition”, Solid State Communications, vol. 93, pp. 939-942, 1995.
[58] S. A. Stockman, G. E. Hofler, J. N. Baillargeon, K. C. Hsieh, K. Y. Cheng, and
G. E. Stillman, “Characterization of heavily carbon-doped GaAs grown by metalorganic chemical vapor deposition and metalorganic molecular beam
epitaxy”, J. Appl. Phys, vol. 72, pp. 981-987, 1992.
[59] D. Lancefield, A. R. Adams, and M..A. Fisher, “Reassessment of ionized impurity scattering and compensation in GaAs and InP including correlation scattering”, J. Appl. Phys, vol. 62, pp. 2342-2359, 1987.
[60] D. C. Look, D. K. Lorance, J. R. Sizelove, C. E. Stutz, and K. R. Evans, and
D. W. Whitson, “Alloy scattering in p-type AlxGa1-xAs”, J. Appl. Phys, vol. 71, pp. 260-266, 1992.
[61] J. R. Hayes, and P. D. Greene, “Mobility of holes in the quaternary alloy
In1-xGaxAsyP1-y”, Electronics Letters, vol. 16, pp. 282-284, 1980.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top