跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃楚翔
研究生(外文):Chu-Hsiang Huang
論文名稱:以感測器網路為基礎的智慧型系統之資料融合決策與控制
論文名稱(外文):Information Fusion, Decision and Control ofSensor Network Based Intelligent Systems
指導教授:陳光禎陳光禎引用關係
指導教授(外文):Kwang Cheng Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:106
中文關鍵詞:感測器網路資訊融合智慧型決策資料融合多重觀察智慧型系統機器人導航決策理論感知無線電頻譜感測接受器感測雙向時間分割頻譜
外文關鍵詞:Sensor networkinformation fusionintelligent decisiondatafusionmultiple observationintelligent systemrobotnavigationdecision theorycognitive radiospectrum sensingreceiver sensingDTD spectrum sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從環境中蒐集資料的感測器網路讓許智慧型裝置,例如機器人、智慧型車輛甚致是生物
醫療器材的應用與設置成為可行的技術。我們觀察到傳統的方法分開執行感測器網路的訊息
融合、決策、與接下來的控制行動,而我們提出了一個創新的智慧型決策架構來做整個這些
裝置的系統之模型,而可以更進一步的增進系統效能來超越傳統方法。智慧型決策架構藉由
分開事件到觀察的映射,成為兩個映射,分別是從事件到物理量及從物理量到觀測,而改善
了傳統估計方法。數學公式化在本篇論文中建構出來而且應用於救火機器人的場景來展示它
的有效性。我們還更展示了智慧型決策架構在特定的條件下可以被退化成傳統的決策方法。
更重要的,我們可以把這個架構延展而超出傳統機制,到融合多個物理量的觀察然後獲得最
佳解條件。對於有限物理量相關性資訊下的決策,我們提出了觀察選擇然後求得其與最佳決
策等效之條件。較缺乏嚴謹數學架構的模糊邏輯常被應用於這樣的決策,而我們可以展示具
嚴謹定義的決策理論數學架構之觀察選擇可以退化成多觀察模糊邏輯決策。最後,模擬結果
顯示我們提出的智慧型決策架構的確改善了決策精準程度然後也增進了系統效能。除了感測
器網路,這個架構也可以應用於各種不同的智慧型或感知系統。我們提出了在智慧型決策架
構下發展出來的雙向時間分割頻譜偵測來展示除了感測器網路之外的應用。這個方法藉由僅
一個點的從獨立感測通道的多重觀察減低了隱藏點問題,而合作頻譜偵測則需要多重點去進
行多重觀察。這個方法更進一步的利用了因為地理位置間隔產生的路徑損失之資訊來增進感
測效能。分析及模擬結果顯示我們提出的頻譜偵測方法顯著的改善了傳統的頻譜偵測效能。
Sensor networks to collect various information from environments enable deployment and
application of many intelligent devices and systems, such as robots, intelligent vehicles, and even
biomedical instruments. Observing traditional approach separately executing information fusion
from sensor networks, decision, and later control functions, we propose a novel intelligent decision
framework to allow thorough system modeling of such devices, and thus further enhancement
beyond traditional approach. Intelligent decision framework improves traditional estimation theory
by separating the mapping from event to observation into two mappings, the mapping from
observed physical quantity to sensor observation and the mapping from target event to physical
quantity. The mathematical formulation is constructed and applied in the firefighting robot
navigation scenario to illustrate its effectiveness. We further shows that the intelligent decision
framework can be degenerated to traditional decision schemes under special conditions. More
importantly, we can extend the framework to fuse observations from multiple kinds of physical
quantities and derive the optimal decision, beyond traditional statistical decision mechanisms. For
the decision with limited knowledge of the correlations among physical quantities, we propose
Observation Selection and derive the equality condition with optimal decision. While fuzzy logic of
less strict-sense mathematic structure is commonly employed to resolve this application scenario,
we can demonstrate that Observation Selection derived from well-defined decision theory can be degenerated to fuzzy logic of multiple kinds of observations. Finally, simulation results show that
the proposed intelligent decision framework indeed improves the accuracy of the decision and
enhances system performance. In addition to sensor network, this framework can also be applied in
various intelligent system or cognitive systems. We propose a novel cognitive radio spectrum
sensing scheme, Dual-way Time-Division Spectrum Sensing, derived under intelligent decision
framework to demonstrate the application of this general framework other than sensor network.
This scheme mitigates the hidden terminal problem by only one node taking multiple observations
from independent sensing channel, while cooperative spectrum sensing needs multiple nodes to
perform multiple observation. Moreover, this scheme takes the path-loss due to geographical
separation into consideration to improve the sensing performance. Analytical and simulation result
shows that the proposed spectrum sensing scheme significantly improves the performance of
traditional spectrum sensing.
Keywords: Sensor network, information
誌謝……………………………………………………………………. ..I
中文摘要………………………………………………………………..II
英文摘要………………………………………………………………. IV
List of Figures…………………………………………………………IX
List of Tables…………………………………………………..………..XI
Chapter 1 Introduction………………………………………...............….1
1.1 Information Fusion……………………....................................................1
1.2 Sensor Network Based Intelligent System.......................................................6
1.3 Organization….................................................................................................8
Chapter 2 Intelligent Decision Framework..............................................10
2.1 Framework Overview………………….......................................................10
2.2 System Model…….……………………......................................................12
Chapter 3 Sensor Network Navigation System for Firefighting Robot…18
3.1 Intelligent Decision Framework for Firefighting Robot………………….…19
3.2 Sensor Observation Model……............………………………………….…20
3.3 Degenerate Problem: State space model…………………………………...23
Appendix 3. State-space Model with Estimation of Previous State…...………..27
Chap t e r 4 I n t e l l i g e n t D e c i s i on Framework- Multip l e
Observation……………………………………………………………31
4.1 Optimal Multi-Observation Decision System Model…………………….…32
4.2 Observation Selection...…………………………………………………….35
4.3 Cramer-Rao bound…………...……………………………………………..41
4.4 Optimal Ratio Combining…………………………………………………44
4.5 Fuzzy logic………………………………………………………………….46
4.6 Performance Comparison of Observation Selection and Ratio Combining...51
Chapter 5 Multi-Observation Sensor Network Navigation System for
Firefighting Robot....................................................................................61
5.1 Multi-Observation Intelligent Decision System Model………………….…61
5.2 Degenerate Problem: Fuzzy Logic Controller...………………………….…62
Chapter 6 Experiments………………………………………………….64
6.1 Single Observation……………………………………………………….…64
6.2 Multiple Observation……………………………………………………..…69
Chapter 7 Cognitive Radio Spectrum Sensing under Intelligent Decision
Framework………………………………………………………………74
7.1 Cognitive Radio Spectrum Sensing.…..………………………………….…74
7.2 Spectrum Sensing Model…………………….…………………………..…78
7.3 Spectrum Sensing Procedure and Algorithm…………………………..…81
7.4 Performance Analysis and Comparison……...…………………………..…86
7.5 Numerical Result……………………...……...…………………………..…90
Chapter 8 Conclusions and Future Works…………..…………………..97
Bibliography…………………………………………………………...99
[1]. Kailath, T., "An innovations approach to least-squares estimation--Part I: Linear
filtering in additive white noise," Automatic Control, IEEE Transactions on , vol.13,
no.6, pp. 646-655, Dec 1968
[2]. Lee, C.C., "Fuzzy logic in control systems: fuzzy logic controller. I," Systems,
Man and Cybernetics, IEEE Transactions on , vol.20, no.2, pp.404-418, Mar/Apr
1990
[3]. Blum, R.S.; Kassam, S.A.; Poor, H.V., "Distributed detection with multiple
sensors II. Advanced topics," Proceedings of the IEEE , vol.85, no.1, pp.64-79, Jan
1997
[4] R. A. Fisher, “On the Mathematical Foundations of Theoretical Statistics,” Phil.
Trans. Roy. Soc., London, vol.222, 309 (1922)
[5] C.H Huang, K.C Chen, “Decision-Prediction Sensor Fusion for Intelligent Mobile
Device Navigation”
100
[6] J. Crank. “The Mathematics of Diffusion,” Oxford, UK: Oxford University Press,
1956.
[7] Hoover, A.; Olsen, B.D., "Sensor network perception for mobile robotics,"
Robotics and Automation, 2000. Proceedings. ICRA ''00. IEEE International
Conference on , vol.1, no., pp.342-347 vol.1, 2000
[8] Sijs, J.; Papp, Z.; van den Bosch, P.P.J., "Vehicle motion-state-estimation using
distributed sensing," Intelligent Vehicles Symposium, 2008 IEEE , vol., no.,
pp.458-463, 4-6 June 2008
[9] H. van Trees, Detection, Estimation, and Modulation Theory, New York: Wiley,
vol. I, 1968.
[10] Masehian, E.; Amin-Naseri, M.R., "Sensor-Based Robot Motion Planning - A
Tabu Search Approach," Robotics & Automation Magazine, IEEE , vol.15, no.2,
pp.48-57, June 2008
[11] Batalin, M.A.; Sukhatme, G.S.; Hattig, M., "Mobile robot navigation using a
sensor network," Robotics and Automation, 2004. Proceedings. ICRA ''04. 2004 IEEE
International Conference on , vol.1, no., pp. 636-641 Vol.1, 26 April-1 May 2004
[12] Murtra, A.C.; Tur, J.M.M.; Sanfeliu, A., "Efficient active global localization for
mobile robots operating in large and cooperative environments," Robotics and
Automation, 2008. ICRA 2008. IEEE International Conference on , vol., no.,
pp.2758-2763, 19-23 May 2008
101
[13] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz, “A distributed
coordination framework for wireless sensor and actor networks,” in Proceedings of
ACM Mobihoc 2005, Urbana-Champaign, IL, May 2005.
[14] Venkitasubramaniam, P.; Adireddy, S.; Tong, L., "Sensor networks with mobile
access: optimal random access and coding," Selected Areas in Communications, IEEE
Journal on , vol.22, no.6, pp. 1058-1068, Aug. 2004
[15] Batalin, M.A.; Sukhatme, G.S., "Using a sensor network for distributed
multi-robot task allocation," Robotics and Automation, 2004. Proceedings. ICRA ''04.
2004 IEEE International Conference on , vol.1, no., pp. 158-164 Vol.1, 26 April-1
May 2004
[16] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery. “Information fusion for
wireless sensor networks: Methods, models, and classifications.” ACM Computing
Surveys, 39(3):9, 2007.
[17] Muller, H.C.; Fischer, A., "A robust fire detection algorithm for temperature and
optical smoke density using fuzzy logic," Security Technology, 1995. Proceedings.
Institute of Electrical and Electronics Engineers 29th Annual 1995 International
Carnahan Conference on , vol., no., pp.197-204, 18-20 Oct 1995
[18] Jianwei Zhang; Wille, F.; Knoll, A., "Fuzzy logic rules for mapping sensor data
to robot control," Advanced Mobile Robot, 1996., Proceedings of the First Euromicro
Workshop on , vol., no., pp.29-38, 9-11 Oct 1996
102
[19] Lima, P.U., "A Bayesian Approach to Sensor Fusion in Autonomous Sensor and
Robot Networks," Instrumentation & Measurement Magazine, IEEE , vol.10, no.3,
pp.22-27, June 2007
[20] Obradovic, D.; Lenz, H.; Schupfner, M., "Fusion of Sensor Data in Siemens Car
Navigation System," Vehicular Technology, IEEE Transactions on , vol.56, no.1,
pp.43-50, Jan. 2007
[21] Chunlin Chen; Han-Xiong Li; Daoyi Dong, "Hybrid Control for Robot
Navigation - A Hierarchical Q-Learning Algorithm," Robotics & Automation
Magazine, IEEE , vol.15, no.2, pp.37-47, June 2008
[22] Gulrez, T.; Challa, S.; Yaqub, T.; Katupitiya, J.; Khan, N.M.; Ramer, R., "Sensor
Relevance Validation for Autonomous Mobile Robot Navigation," Robotics,
Automation and Mechatronics, 2006 IEEE Conference on , vol., no., pp.1-6, Dec.
2006
[23] Gulrez, T.; Challa, S.; Yaqub, T.; Katupitiya, J., "Relevant opportunistic
information extraction and scheduling in heterogeneous sensor networks,"
Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE
International Workshop on , vol., no., pp.161-164, 13-13 Dec. 2005
[24] Hanson, M.A.; Powell, H.C.; Barth, A.T.; Ringgenberg, K.; Calhoun, B.H.; Aylor,
J.H.; Lach, J., "Body Area Sensor Networks: Challenges and Opportunities,"
Computer , vol.42, no.1, pp.58-65, Jan. 2009
103
[25] Taehong Kim; Young-Guk Ha; Jihoon Kang; Daeyoung Kim; Chong Poh Kit;
Joo-Chan Sohn, "Experiments on Building Ubiquitous Robotic Space for Mobile
Robot Using Wireless Sensor Networks," Advanced Information Networking and
Applications - Workshops, 2008. AINAW 2008. 22nd International Conference on ,
vol., no., pp.662-667, 25-28 March 2008
[26] Kyuseo Han; Jaeyoung Lee; Sangik Na; Wonpil You, "An Ambient Robot
System Based on Sensor Network: Concept and Contents of Ubiquitous Robotic
Space," Mobile Ubiquitous Computing, Systems, Services and Technologies, 2007.
UBICOMM ''07. International Conference on , vol., no., pp.155-159, 4-9 Nov. 2007
[27] YuanYuan Li; Parker, L.E., "Detecting and monitoring time-related abnormal
events using a wireless sensor network and mobile robot," Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on , vol., no.,
pp.3292-3298, 22-26 Sept. 2008
[28] Sandberg, H.; Rabi, M.; Skoglund, M.; Johansson, K.H., "Estimation over
heterogeneous sensor networks," Decision and Control, 2008. CDC 2008. 47th IEEE
Conference on , vol., no., pp.4898-4903, 9-11 Dec. 2008
[29] Tae-Hwan Kim; Seung-Il Lee; Yong-Doo Lee; Won-Kee Hong, "Design and
evaluation of in-vehicle sensor network for Web based control," Engineering of
Computer Based Systems, 2006. ECBS 2006. 13th Annual IEEE International
Symposium and Workshop on , vol., no., pp.10 pp.-218, 27-30 March 2006
104
[30] Sawant, H.; Jindong Tan; Qingyan Yang; Qizhi Wang, "Using Bluetooth and
sensor networks for intelligent transportation systems," Intelligent Transportation
Systems, 2004. Proceedings. The 7th International IEEE Conference on , vol., no., pp.
767-772, 3-6 Oct. 2004
[31] Rimon, E.; Koditschek, D.E., "Exact robot navigation using artificial potential
functions," Robotics and Automation, IEEE Transactions on , vol.8, no.5, pp.501-518,
Oct 1992
[32] Bor-Sen Chen; Chang-Lan Tsai; Chia-Sheng Hsu, "Robust adaptive MMSE/DFE
multiuser detection in multipath fading channel with impulse noise," Signal
Processing, IEEE Transactions on , vol.53, no.1, pp. 306-317, Jan. 2005
[33] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1995.
[34] Baldo, N.; Zorzi, M., "Fuzzy logic for cross-layer optimization in cognitive radio
networks," Communications Magazine, IEEE , vol.46, no.4, pp.64-71, April 2008
[35] Youshen Xia; Kamel, M.S., "Cooperative Learning Algorithms for Data Fusion
Using Novel $L_{1}$ Estimation," Signal Processing, IEEE Transactions on , vol.56,
no.3, pp.1083-1095, March 2008
[36] B. V. Dasarathy. Information fusion - what, where, why, when, and how? In
Proceedings of the 4th International Conference on Information Fusion, volume 2,
pages 75–76, Feb. 2001.
105
[37] D. Tse and P. Viswanath. Fundamentals of Wireless Communications.
Cambridge University Press, 2005.
[38] J. Mitola and G. Q. Maguire, “Cognitive Radio: Making Software Radios More
Personal,” IEEE Personal Communications, vol. 6, no. 4, August 1999, pp. 13-18.
[39] A. Goldsmith, Wireless Communications Cambridge, U.K.: Cambridge Univ.
Press, 2004.
[40] M Basseville, IV Nikiforov, Detection of Abrupt Changes: Theorem and
Application, Prentice Hall, 1993.
[41] F. Gustafsson, Adaptive Filtering and Change Detection. New York: Wiley,
2000.
[42] Digham, F.F.; Alouini, M.-S.; Simon, M.K., "On the energy detection of
unknown signals over fading channels," Communications, 2003. ICC ''03. IEEE
International Conference on , vol.5, no., pp. 3575-3579 vol.5, 11-15 May 2003
[43] Chennakeshu, S.; Anderson, J.B., "Error rates for Rayleigh fading multichannel
reception of MPSK signals," Communications, IEEE Transactions on , vol.43, no.234,
pp.338-346, Feb/Mar/Apr 1995
[44] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Trans. ASME J. Basic Eng., vol. 82, pp. 34-45, Mar. 1960.
[45] G.Welch and G. Bishop. “An introduction to the kalman filter.” Technical Report
95-041, University of North Carolina, Department of Computer Science, 1995.
[46] I.F. Akyildiz et al., "Wireless Sensor Networks: A Survey," Computer Networks,
Elsevier Science, vol. 38, no. 4, 2002, pp. 393-422.
[47] A. Mainwaring, “Wireless Sensor Networks for Habitat Monitoring,” in WSNA
Atlanta, GA, Sept. 2002.
[48] M. Bhardwaj, T. Garnett, A.P. Chandrakasan, Upperbounds on the lifetime of
sensor networks, IEEE International Conference on Communications ICC’01,
106
Helsinki,Finland, June 2001.
[49] C. C. Y. Poon, Y-T Zhang, S-D Bao, “A novel biometrics method to secure
wireless body area sensor networks for telemedicine and mhealth,” IEEE
Communications Magazine, vol. 44, pp. 73-81, April 2006 .
[50] Farella, E.; Pieracci, A.; Benini, L.; Acquaviva, A., "A Wireless Body Area
Sensor Network for Posture Detection," Computers and Communications, 2006. ISCC
''06. Proceedings. 11th IEEE Symposium on , vol., no., pp. 454-459, 26-29 June 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊