跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 22:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳民培
研究生(外文):Min-Pei Chen
論文名稱:應用於全球定位系統之多路徑干擾偵測及消除演算法
論文名稱(外文):Multipath Detection and Mitigation Algorithm for Global Positioning System
指導教授:曹恆偉曹恆偉引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:92
中文關鍵詞:多路徑干擾偵測交相關函數失真臨界值多路徑干擾消除鑑別器
外文關鍵詞:multipath detectioncross-correlation distortionthresholdmultipath mitigationdiscriminator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著衛星全球定位系統(Global Positioning System, GPS)的成熟,許多共同的定位誤差來源能夠藉由差分技巧(Differential Technique)加以消除,像是時脈誤差(Clock Error)、對流層誤差(Tropospheric Error)和電離層誤差(Ionospheric Error)。然而多路徑干擾(Multipath Interference)會隨時間和環境的不同而改變,無法使用差分技巧來消除,所以成為接收機定位誤差的主要來源之一。
依據多路徑訊號的特性,本論文分別提出多路徑干擾偵測(Detection)和多路徑干擾消除(Mitigation)的演算法。藉由偵測演算法,接收機能夠判斷是否存在多路徑訊號;當偵測到多路徑訊號,則執行減低定位誤差的方法。設計的議題,包含相關器電碼相位間距(Correlator Spacing)的決定、移動平均濾波器(Moving Average Filter)的tap數和臨界值(Threshold)的設定,並分析前端射頻濾波器(Front-End RF Filter)效應和基頻電路中定點(Fixed-Point)計算的影響。模擬結果顯示偵測器能夠達到即時(Real-Time)偵測的要求,並且其誤判率(False Alarm Probability)和錯失率(Miss Detection Probability)都很低。消除演算法是在電碼鎖相迴路(Delay Lock Loop, DLL)的鑑別器(Discriminator)上作設計,藉由提高鑑別器增益(Discriminator Gain),能夠達到減少多路徑干擾效應的好處。由模擬結果,與短相關器(Narrow Correlator)相比,在射頻濾波器頻寬為8.184 MHz下,能夠減少約20%的虛擬距離(Pseudorange)誤差;當頻寬為16.368 MHz時,則能減少約56%的虛擬距離誤差;而其抖動(Jitter)則稍增為短相關器的1.6倍。
In Global Positioning System (GPS), many positioning errors such as clock error, tropospheric error and ionospheric error can be eliminated by using differential techniques. But characteristics of multipath interference depend on time and environment, which means that it can’t be canceled by differential technique. Therefore, multipath becomes one of the main error sources in GPS.
According to the characteristics of multipath, this thesis proposes the multipath detection and multipath mitigation algorithm. The purpose of multipath detector is to determine whether a multipath is present. If multipath detector decides that a multipath is present, then the receiver may take some actions to mitigate multipath effect. The design issues of multipath detector contain selection of correlator spacing, taps of moving average filter and threshold setting. The influences of front-end RF filter and fixed-point effect are also analyzed. Simulation results show that the false alarm and miss detection probability of multipath detector are quite low. Moreover, the ability of real-time detection is very robust. For multipath mitigation, this thesis proposes a code discriminator to reduce multipath effect by means of increasing discriminator gain. In comparison with conventional narrow correlator, our proposed discriminator provides a 20% reduction in pseudorange error when the front-end RF bandwidth is 8.184 MHz and 56% when it is 16.368 MHz. However, the jitter when using this proposed discriminator is about 1.6 times larger than narrow correlator.
摘要....................................................I
Abstract................................................III
目錄....................................................V
圖目錄..................................................VII
表目錄..................................................XI
第一章 緒論.............................................1
1.1. 研究背景.........................................1
1.2. 研究動機和預期貢獻...............................2
1.3. 論文架構.........................................2
第二章 多路徑干擾效應與偵測、消除技術回顧...............5
2.1. 多路徑干擾效應...................................5
2.2. 多路徑干擾偵測技術...............................7
2.3. 多路徑干擾消除技術...............................9
第三章 多路徑干擾偵測演算法.............................11
3.1. 多路徑干擾誤差包絡...............................11
3.2. 同相多路徑干擾偵測器.............................13
3.2.1. 運作原理.....................................13
3.2.2. 簡單比例函數.................................15
3.2.3. 簡單比例函數的統計特性.......................19
3.2.4. 定義效能指標.................................24
3.2.5. 相關器的電碼相位間距之選擇...................27
3.2.6. 臨界值與移動平均濾波器Tap數之決定............29
3.2.7. 錯失率.......................................35
3.3. 正交相位偵測器...................................41
3.3.1. 運作原理.....................................41
3.3.2. 簡單比例函數.................................42
3.3.3. 簡單比例函數的統計特性.......................45
3.3.4. 相關器的電碼相位間距之選擇...................46
3.3.5. 臨界值之決定和誤判率.........................47
3.3.6. 錯失率.......................................49
3.4. 即時偵測模擬.....................................53
3.5. 前端射頻濾波器效應...............................63
第四章 定點分析.........................................69
4.1. 系統概觀.........................................69
4.2. 類比數位轉換器位元數分析.........................71
4.3. 本地載波位元數分析...............................73
第五章 多路徑干擾消除演算法.............................75
5.1. 電碼鎖相迴路簡介.................................75
5.2. 短相關器和高解析度相關器.........................77
5.3. 本論文提出的多路徑干擾消除演算法.................81
5.3.1. 電碼相位鑑別器...............................81
5.3.2. 抖動分析.....................................82
5.3.3. 消除多路徑干擾分析...........................84
第六章 結論與未來展望...................................87
6.1. 結論.............................................87
6.2. 未來展望.........................................88
參考文獻................................................89
[1]E. D. Kaplan, C. J. Hegarty, Understanding GPS: Principles and Applications, 2nd ed., Artech House, 2006.
[2]R. D. J. Van Nee, J. Siereveld, P. C. Fenton, B. R. Townsend, “The multipath estimating delay lock loop: approaching theoretical accuracy limits,” Position Location and Navigation Symposium, IEEE , Apr. 1994, pp. 246-251.
[3]A. Steingass, A. Lehner, “Land mobile satellite navigation - characteristics of the multipath channel,” in Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS/GNSS 2003, Sep. 2003, pp. 1016 – 1022.
[4]A. Steingass, A. Lehner, “Measuring the navigation multipath channel - a statistical analysis,” in Proceedings of the 17th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS 2004, Sep. 2004, pp. 1157 – 1164.
[5]B. M. Hannah, “Modelling and simulation of GPS Multipath Propagation,” Ph. D. Thesis, Queensland University of Technology, 2001
[6]M. Irsigler, B. Eissfeller, “Comparison of multipath mitigation techniques with consideration of future signal structures,” in Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS/GNSS 2003, Sep. 2003, 2584 – 2592.
[7]I. M. Barton, “Antenna performance analysis for the nationwide differential global positioning system,” Master Thesis, Ohio University, Ohio, U.S.A, Nov. 2005.
[8]S. B. Bisnath, R.B. Langley, “Pseudorange multipath mitigation by means of multipath monitoring and de-weighting,” in Proceedings of the International Symposium on Kinematic System in Geodesy, Geomatics and Navigation 2001, June 2001.
[9]NovAtel Inc., “L-band antenna performance improvements,” www.novatel.com/Documents/Papers/GPS-702L_WP.pdf
[10]M. Irsigler, G. W. Hein, “Development of a real-time multipath monitor based on multi-correlator observations,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS 2005, Sep. 2005, pp. 2626 – 2637
[11]J. S. Du, “A Multipath mitigation tracking architecture using adaptive path estimator for GPS system,” Master Thesis, National Taiwan University, Taipei, Taiwan, R.O.C., July 2007.
[12]A. J. Van Dierendonck, P. Fenton, T. Ford, “Theory and performance of narrow correlator spacing in a GPS receiver,” in Proceedings of the 1992 National Technical Meeting of the Institute of Navigation, Jan. 1992, pp. 115 – 124.
[13]G. A. McGraw, M. S. Braasch, “GNSS multipath mitigation using gated and high resolution correlator concepts,” in Proceedings of the 1999 National Technical Meeting of Institute of Navigation, San Diego, CA, Jan. 1999, pp. 333 – 342.
[14]R. D. J. Van Nee, “Method of estimating a line of sight signal propagation time using a reduced multipath correlation function,” U.S. Patent, no. 5 615 232, Mar. 25, 1997.
[15]A. M. F. Mood, F. A. Graybill, D. C. Boes, Introduction to the Theory of Statistics, 3rd. ed., McGraw-Hill, 1974.
[16]S. Haykin, Communication Systems, 4th ed., New York: John Wiley & Sons, 2001
[17]D. H. Liu, “Design and analysis of carrier and code synchronization for GNSS receiver,” Master Thesis, National Taiwan University, Taipei, Taiwan, R.O.C., July 2008.
[18]F. Bastide, D. Akos, C. Macabiau, B. Roturier, “Automatic gain control (AGC) as an Interference assessment tool,” in Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS/GNSS 2003, Sep. 2003, pp. 2042 – 2053.
[19]J. W. Betz, “Design and performance of code tracking for the GPS M code signal,” in Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GPS 2000, Sep. 2000, pp. 2140 – 2150.
[20]European Space Agency, European GNSS Supervisory Authority, “Galileo open service, signal in space interface control document (OS SIS ICD),” Feb. 2008, www.gsa.europa.eu/go/galileo/os-sis-icd/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top