跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宗霖
研究生(外文):Tsung-Lin Tsai
論文名稱:視訊編碼技術於無線網狀網路之最佳化模型與效能比較
論文名稱(外文):Modeling and Comparison of Video Coding Techniques for Video Streaming in Wireless Mesh Networks: A Network Optimization Perspective
指導教授:謝宏昀
指導教授(外文):Hung-Yun Hsieh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:91
中文關鍵詞:視訊編碼技術無線網狀網路最佳化模型
外文關鍵詞:Video Coding TechniquesMesh NetworksOptimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨在研究並分析視訊編碼技術於無線網狀網路之最佳化問題。目前許多相關研究主要在追求無線網狀網路上最大的流量來最佳化視訊品質,然而對於視訊串流的品質來說,追求最大的流量並非一定是最好的。在最佳化視訊串流的品質時,也需要考慮不同的視訊編碼技術特性。在本論文中,我們首先分析了不同網路模型變因對於最佳化視訊品質的影響。我們藉由考慮了MPEG-4、FGS以及MDC三種不同視訊編碼技術的位元率-失真函數,建構一個視訊串流品質在無線網狀網路之最佳化數學模型並進行效能比較。從結果中我們發現雖然MDC有較差的編碼效率,但是當網路鏈結的容量變小時,MDC會有比MPEG-4與FGS更好的視訊品質。其次,我們考慮了最短路徑延遲、最少路徑跳躍次數以及最短路徑距離三種不同的路由層機制,來討論他們在使用不同編碼技術時,與視訊品質最佳化路由在選擇路徑與對視訊品質影響的差異。由此延伸模型的結果,我們發現最短路徑延遲路由是三種路由層機制當中表現最好的,特別是當選用MDC作為編碼技術的情況下,效能與視訊品質最佳化路由相差不到0.2 dB。最後,我們進一步考慮了傳輸功率控制與傳輸速率調整兩種媒體控制層機制,在使用不同編碼技術時對最佳化視訊品質的影響。我們發現在考慮了媒體控制層的機制後,FGS視訊品質提升之程度是三者中最好的,而MDC由於其解碼的獨立性,在不同網路環境下有較穩定的視訊品質。模擬結果顯示,在尋求視訊品質最佳化的目標下,在選擇不同視訊編碼技術時,需要考慮路由層以及媒體控制層機制所造成的影響。
The objective of this thesis is to analyze and optimize video performance using different coding techniques over wireless mesh networks. Most work focuses on achieving the highest throughput for performance optimization in mesh networks. However, this goal is not always the best for video streaming, and the characteristics of video coding techniques need to be considered. In this thesis, we first investigate the impact of network factors on optimal video quality. We build an optimization framework for video streaming in mesh networks by considering rate-distortion optimization of different coding techniques. The optimization problem can be formulated as a mixed integer nonlinear programming, and we evaluate the performance of different coding techniques, including MPEG-4, Fine Granularity Scalability (FGS), and Multiple Description Coding (MDC) in the proposed framework. We find that although MDC has poor coding efficiency, it performs better than MPEG-4 and FGS when the link capacity is small. We next extend the proposed framework to incorporate the impact of routing layer mechanisms, including minimum delay routing, minimum hop routing, and minimum distance routing. We discuss their difference from the optimal routing, and find that minimum delay routing performs best, especially when MDC is used. Finally, we extend the framework to incorporate the impact of MAC layer mechanisms, including transmission power control and rate adaptation. We find that among the different coding techniques, FGS improves most when using MAC layer mechanisms. MDC has stable performance for different network conditions due to the independency of multiple descriptions. We conclude that the optimal choice of video coding techniques should consider the routing and MAC layer mechanisms in mesh networks.
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . vii
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . 1
CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . 5
2.1 Video Technology Fundamental . . . . . . . . . . . . 5
2.1.1 Video Coding . . . . . . . . . . . . . . . . . . . 5
2.1.2 MPEG-4 Simple Profile . . . . . . . . . . . . . . 6
2.1.3 Fine Granularity Scalability . . . . . . . . . . . 9
2.1.4 Multiple Description Coding . . . . . . . . . . . 11
2.2 Related Works . . . . . . . . . . . . . . . . . . . 14
2.2.1 Testbed Experiment . . . . . . . . . . . . . . . 14
2.2.2 Routing Protocols Modification . . . . . . . . . 15
2.2.3 Optimization Approach . . . . . . . . . . . . . . 15
2.3 Optimization Approaches . . . . . . . . . . . . . . 17
2.3.1 Introduction of MINLP . . . . . . . . . . . . . . 17
2.3.2 Sequential Quadratic Programming . . . . . . . . 18
2.3.3 Branch-and-bound . . . . . . . . . . . . . . . . 18
2.3.4 Optimization Example . . . . . . . . . . . . . . 19
2.4 Motivation . . . . . . . . . . . . . . . . . . . . 22
CHAPTER 3 AN OPTIMIZATION FRAMEWORK FOR VIDEO STREAMING OVER WMNS . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 Video Distortion Model . . . . . . . . . . . . . . 24
3.1.1 Video Quality Evaluation Tool . . . . . . . . . . 24
3.1.2 Rate-Distortion Theory . . . . . . . . . . . . . 25
3.1.3 MPEG-4 Coding Model . . . . . . . . . . . . . . . 26
3.1.4 Fine Granularity Scalability Video Coding Model . 27
3.1.5 Multiple Description Coding Model . . . . . . . . 29
3.2 Network Model . . . . . . . . . . . . . . . . . . . 31
3.2.1 Packet Loss Rate . . . . . . . . . . . . . . . . 33
3.2.2 Aggregated Traffic . . . . . . . . . . . . . . . 33
3.2.3 Delay Model . . . . . . . . . . . . . . . . . . . 33
3.3 Interference Model . . . . . . . . . . . . . . . . 34
3.3.1 Maximal Independent Set . . . . . . . . . . . . . 34
3.3.2 Cliques . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Node Independent Pairs . . . . . . . . . . . . . 37
3.3.4 Link Independent Sets . . . . . . . . . . . . . . 38
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . 38
CHAPTER 4 COMPARISON OF DIFFERENT CODING TECHNIQUES . . 41
4.1 Model Validation . . . . . . . . . . . . . . . . . 41
4.1.1 Rate-Distortion Model . . . . . . . . . . . . . . 41
4.1.2 Loss Distortion Model . . . . . . . . . . . . . . 43
4.2 Grid Topology . . . . . . . . . . . . . . . . . . . 44
4.2.1 Optimized Rate . . . . . . . . . . . . . . . . . 44
4.2.2 Effect of Delay Models . . . . . . . . . . . . . . 46
4.2.3 Impact of Different Video Coding techniques . . . 46
4.3 Roofnet Topology . . . . . . . . . . . . . . . . . 49
4.3.1 Impact of Interference Model . . . . . . . . . . 50
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . 51
CHAPTER 5 MODELING AND IMPACT OF ROUTING LAYER
MECHANISMS . . . . . . . . . . . . . . . . . . . . . . 52
5.1 Category of Routing Protocols . . . . . . . . . . . 52
5.1.1 Minimum Hop Counts . . . . . . . . . . . . . . . 52
5.1.2 Minimum Delay . . . . . . . . . . . . . . . . . . 53
5.1.3 Minimum Distance . . . . . . . . . . . . . . . . 54
5.2 Results of Different Routing objectives . . . . . . 54
5.2.1 Difference between Different Routing objectives . 54
5.2.2 Impact of Capacity Variance . . . . . . . . . . . 56
5.2.3 Impact of Coding Techniques in Minimum Delay Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 Impact of Encoding Techniques in Minimum Hops Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.5 Impact of Encoding Techniques in Minimum Distance Routing . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . 67
CHAPTER 6 MODELING AND IMPACT OF MAC LAYER MECH-
ANISMS . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1 Model of MAC Characteristics . . . . . . . . . . . 69
6.1.1 Model of Transmission Power . . . . . . . . . . . 69
6.1.2 Rate Adaptation . . . . . . . . . . . . . . . . . 70
6.1.3 Noise and Interference Model . . . . . . . . . . 71
6.1.4 BER . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Results of Optimization Including MAC Layer Model . 73
6.2.1 Impact of Rate Adaptation . . . . . . . . . . . . 73
6.2.2 Impact of Power Control . . . . . . . . . . . . . 77
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . 84
CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . . . . 86
APPENDIX A RELATIONSHIP BETWEEN BER AND SNR FROM
INTERSIL HFA3861B . . . . . . . . . . . . . . . . . . . 87
REFERENCES . . . . . . . . . . . . . . . . . . . . . . 88
[1] Shuo-Wei Liao and Hung-Yun Hsieh, "A Cross-Layer Packet Striping Framework for Video Streaming in Heterogeneous Wireless Networks," July 2007.
[2] "Bay Area Wireless Users Group." Online Available at: http://www.bawug.org
[3] "Seattle Wireless." Online Available at: http://www.seattlewireless.net
[4] "MIT Roofnet Implementation." Online Available at: http://pdos.csail.mit.edu/roofnet/design/
[5] "Microsoft Mesh Networking." Online Available at: http://research.microsoft.com/mesh
[6] "Tropos Networks." Online Available at: http://www.tropos.com
[7] "YouTube - Broadcast Yourself." Online Available at: http://www.youtube.com
[8] "Nico Nico Douga." Online Available at: http://www.nicovideo.jp
[9] Xiaoqing Zhu and Bernd Girod, "Media-Aware Multi-User Rate Allocation over Wireless Mesh Network," Proc. IEEE First Workshop on Operator-Assisted (Wireless Mesh) Communicty Networks, September 2006.
[10] M.-Y. Hsieh, Y.-M. Huang, and T.-C. Chiang, "Transmission of Layered Video Streaming via Multi-path on Ad Hoc Networks," Multimedia Tools and Applications, February 2007.
[11] D. Li, C.-N. Chuah, G. Cheung, and S.J. Ben Yoo, "MUVIS: Multi-Source Video Streaming Server over WLANs," Journal of Communications and Networks-Special Issue on Toward the Next Generation Mobile Communications, no. 2, pp. 144-156, June 2005.
[12] Eric Setton, X. Zhu, and Bernd Girod, "Congestion-Distortion Optimized Video Transmission Over Ad Hoc Networks," Signal Processing: Image Communication, no. 8, pp. 773-783, Sepemter 2005.
[13] Y. Andreopoulos, N. Mastronarde, and M. V. D. Schaar, "Cross-Layer Optimized Video Streaming Over Wireless Multihop Mesh Networks," IEEE Journal on Selected Areas in Communications, no. 11, November 2006.
[14] Danjue Li, Qian Zhang, Chennee Chuah, and S.J.Ben Yoo, "Error Resilient Concurrent Video Streaming Over Wireless Mesh Network," Packet Video Workshop, April 2006.
[15] Yoshinori Sakai and Toshiyuki Yoshida, Human Communication Kougaku Series, Eizou Jyouhou Fugouka. Ohmsha, 2001.
[16] Fernando Pereira and Touradj Ebrahimi, The MPEG-4 Book. Upper Saddle River, NJ: Prentice Hall, 2002.
[17] Y. Wang, S. Panwar, S. Lin, and S. Mao, "Wireless Video Transport Using Path Diversity: Multiple Description vs. Layer Coding," IEEE International Conference on Image Processing (ICIP), 2002.
[18] J. Apostolopoulos, W. Tan, S. Wee, and G. Wornell, "Modeling Path Diversity for Multiple Description Video Communication," IEEE International Conference on Acoustics Speech Signal Processing (ICASSP), 2002.
[19] Yuan Sun, Irfan Sheriff, Elizabeth M. Belding-Royer, and Kevin C. Almeroth, "An Experiment Study of Multimedia Traffic Performance in Mesh Networks," International Workshop on Wireless Tra±c Measurements and Modeling, 2005.
[20] John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Morris, "Architecture and Evaluation of an Unplanned 802.11b Mesh Network," MobiCom, August 2005.
[21] "NS-2." Online Available at: http://www.isi.edu/nsnam/ns/
[22] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, "Analysis of Video Transmission over Lossy Channels," IEEE Journal on Selected Areas in Communications, no. 6, pp. 1012-1032, June 2000.
[23] Tsai-Wei Wu and Hung-Yun Hsieh, "Capacity Characterization in Wireless Mesh Networks with 802.11a/b/g Multi-Mode Radios," July 2006.
[24] T. Salonidis, Michele Garetto, Amit Saha, and Edward Knightly, "Identifying High Throughput Paths in 802.11 Mesh Networks: a Model-based Approach," IEEE ICNP, 2007.
[25] K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, "Impact of Interference on Multi-hop Wireless Network Performance," MobiCom, Sepemter 2003.
[26] M. Duran and I.E. Grossmann, "An Outer-approximation Algorithm for a Class of Mixed-integer Nonlinear Programs," Mathematical Programming, pp. 307-339, 1986.
[27] "NEOS Server for Optimization." Online Available at: http://www-neos.mcs.anl.gov/
[28] "AMPL Modeling Language for Mathematical Programming." Online Available at: http://www.ampl.com/
[29] S. Leyffer, "Integrating SQP and Branch-and-bound for Mixed Integer Nonlinear Programming," Computational Optimization and Applications, pp. 295-309, 2001.
[30] S. Han, "A Globally Convergent Method for Nonlinear Programming," Journal of Optimization Theory and Applications, no. 3, pp. 1533-1546, 1977.
[31] M. Powell, "A Fast Alogrithm for Nonlinear Constrained Optimization Calculations," Numerical Analysis, pp. 144-157, 1977.
[32] R. Dakin, "A Tree Search Alogrithm for Mixed Integer Programming Problems," Computer Journal, pp. 250-255, 1965.
[33] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, 2001.
[34] Byron S. Gottfried and Joel Weisman, Introduction to Optimization Theory. Prentice Hall, 1973.
[35] Eric Setton, X. Zhu, and Bernd Girod, "Minimizing Distortion for Multipath Video Streaming over Ad Hoc Networks," International Conference on Impage Processing, pp. 1751-1754, October 2004.
[36] M. Dai, D. Loguinov, and H. Radha, "Rate-Distortion Modeling of Scalable Video Coders," IEEE ICIP, October 2004.
[37] Z. He and S. K. Mitra, "A Unified Rate-Distortion Analysis Framework for Transform Coding," IEEE Trans. on CSVT, December 2001.
[38] S. Mallat and F. Falzon, "Analysis of Low Bit Rate Image Transform Coding," IEEE Trans. on Signal Processing, April 1998.
[39] M. Dai, D. Loguinov, and H. Radha, "Statistical Analysis and Distortion Modeling of MPEG-4," IEEE International Conference on Image Processing (ICIP), September 2003.
[40] M. Alasti, K. Sayrafian Pour, A. Ephremides, and N. Farvardin, "Multiple Description Coding in Networks with Congestion Problem," IEEE Trans. on Information Theory, March 2001.
[41] L. Ozerow, "On a Source Coding Problem with Two Channels and Three Receivers," Bell Syst. Tech. J., no. 10, pp. 84-91, December 1980.
[42] Kamal Jain, Jitendra Padhye, Venkat Padmanabhan, and Lili Qiu, "Impact of Interference on Multi-hop Wireless Network Performance," MobiCom, September 2003.
[43] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, "Impact of Interference on Multi-hop Wireless Network Performance," Mobicom ''03: Proceeding of the 9th annual international conference on Mobile computing and networking, pp. 66-80, 2003.
[44] J. W. Moon and L. Moser, "On Cliques in Graphs," Irael Journal of Mathematics 3, pp. 23-28, 1965.
[45] M. Kodialam and T. Nandagopal, "Characterizing the Capacity Region in Multi-radio Multi-channel Wireless Mesh Networks," Mobicom ''05: Proceeding of the 11th annual international conference on Mobile computing and networking, pp. 73-87, 2005.
[46] T. S. Rappaport, Wireless Communications, Principles and Practice. Prentice Hall, 1996.
[47] Xiuchao Wu, "Simulate 802.11b Channel within NS2," 2005.
[48] Javier del Prado Pavon and Sunghyun Choi, "Link Adaptation Strategy for IEEE 802.11 WLAN via Received Signal Strength Measurement," IEEE ICC, 2003.
[49] Intersil, "HFA3861B: Direct Sequence Spread Spectrum Baseband Processor," January 2000.
[50] R. Jain, D.M. Chiu, and W. Hawe, "A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Systems," DEC Research Report TR-301, 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top