跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張如因
研究生(外文):Ju-Yin Chang
論文名稱:探討視覺區血氧訊號變化的非線性程度
論文名稱(外文):The nonlinearity investigation between stimulation duration and HRFs in primary visual cortex
指導教授:鍾孝文
指導教授(外文):Hsiao-Wen Chung
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:48
中文關鍵詞:血氧訊號功能性磁振造影視覺皮質線性度
外文關鍵詞:BOLD fMRILinearitystimulation durationvisual cortexregion-of-interest
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要探討視覺皮質區血氧訊號變化的線性程度。透過不同視覺刺激長度以獲得不同的血氧訊號變化,用短刺激所誘發的血氧訊號變化來預測長刺激誘發的血氧訊號變化,藉由預測的準確度來判定視覺皮質區血氧訊號變化的線性程度。
實驗結果顯示,在刺激長度小於四秒的情況下,視覺皮質區的血氧訊號變化非線性,此一結果影響我們選擇用何種方法來分析短刺激功能性磁振造影的結果。本文也討論了血氧訊號變化在不同反應區裡有何不同。
Hemodynamic responses to visual stimulation were assessed for nonlinearity in short stimulation duration. Four stimulation durations were used (1, 2, 4, and 8 sec), and 9 subjects were scanned to verify the nonlinear BOLD responses in visual cortex. The test of nonlinearity consisted of using BOLD responses due to short stimulation durations to predict responses due to long stimulation durations. The results show the hemodynamic response is nonlinear for stimulation duration less than 4 sec in the visual cortex. In addition, the shape of hemodynamic response function influenced by the choice of region-of-interest was discussed.
口試委員會審定書…………………………………………………………………...I
誌謝…………………………………………………………………………………..II
中文摘要…………………………………………………………………………….IV
英文摘要……………………………………………………………………………..V

1 Introduction…………………………………………………………….……..1
2 Materials and Methods……………………………………………………..4
2.1 Subjects………………………………………………………………….....4
2.2 Image acquisition…………………………………………………………..4
2.3 Functional paradigm…………………………………………………….....5
2.4 Data analysis…………………………………………………………….....6
2.4.1 Determine the activated voxels……………………………………..6
2.4.2 Linear analysis……………………………………………………...9

3 Results………………………………………………………………….............11
3.1 Typical HRFs……………………………………………………………...11
3.2 Atypical HRFs…………………………………………………………….19
3.2.1 Case 1……………………………………………………………...19
3.2.2 Case 2……………………………………………………………...22
3.2.3 Case 3……………………………………………………………...23
3.2.4 Case 4……………………………………………………………...25
3.3 Linear analysis…………………………………………………………….26
3.3.1 RMSE test.…………………………………………………….....28
3.3.2 T test………………………………………………………….......31

4 Discussion……………………………………………………………………33
4.1 HRFs were influenced by ROIs………………………………………….33
4.2 Typical HRFs versus atypical HRFs…………………….……………….40
4.3 Nonlinearity………………………………………………………….......41
4.4 Motion Correction……………………………………………………….42
4.5 Experimental design……………………………………………………..44

5 Conclusion………………………………………………………………......46
Reference…………………………………………………………………………47
1.Hennig, J., et al., Functional magnetic resonance imaging: a review of methodological aspects and clinical applications. J Magn Reson Imaging, 2003. 18(1): p. 1-15.
2.Huettel, S.A., A.W. Song, and G. McCarthy, Functional Magnetic Resonance Imaging. 2004, Sunderland,MA,U.S.A: sinauer. 237.
3.Huettel, S.A., A.W. Song, and G. McCarthy, Functional Magnetic Resonance Imaging. 2004, Sunderland,MA,U.S.A: sinauer. 298.
4.Greene, J.D., et al., The Neural Bases of Cognitive Conflict and Control in Moral Judgment. Neuron, 2004. 44(2): p. 389-400.
5.Sanfey, A.G., et al., The Neural Basis of Economic Decision-Making in the Ultimatum Game. Science, 2003. 300(5626): p. 1755-1758.
6.Kuo, W.J., et al., Orthographic and phonological processing of Chinese characters: an fMRI study. Neuroimage, 2004. 21(4): p. 1721-31.
7.Huettel, S.A. and G. McCarthy, Evidence for a refractory period in the hemodynamic response to visual stimuli as measured by MRI. Neuroimage, 2000. 11(5 Pt 1): p. 547-53.
8.Yacoub, E., K. Ugurbil, and N. Harel, The spatial dependence of the poststimulus undershoot as revealed by high-resolution BOLD- and CBV-weighted fMRI. J Cereb Blood Flow Metab, 2005. 26(5): p. 634-644.
9.Buxton, R.B., E.C. Wong, and L.R. Frank, Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med, 1998. 39(6): p. 855-64.
10.Boynton, G.M., et al., Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci, 1996. 16(13): p. 4207-21.
11.Soltysik, D.A., et al., Comparison of hemodynamic response nonlinearity across primary cortical areas. Neuroimage, 2004. 22(3): p. 1117-27.
12.Liu, H. and J. Gao, An investigation of the impulse functions for the nonlinear BOLD response in functional MRI. Magn Reson Imaging, 2000. 18(8): p. 931-8.
13.Friston, K.J., et al., Event-related fMRI: characterizing differential responses. Neuroimage, 1998. 7(1): p. 30-40.
14.Friston, K.J., et al., Detecting activations in PET and fMRI: levels of inference and power. Neuroimage, 1996. 4(3 Pt 1): p. 223-35.
15.Jinhu Xiong, J.-H.G.J.L.L.P.T.F., Clustered pixels analysis for functional MRI activation studies of the human brain. Hum Brain Mapp, 1995. 3(4): p. 287-301.
16.McDonald, J.H. Paired t-test. 2007 [cited; Available from: http://udel.edu/~mcdonald/statpaired.html.
17.Engel, S.A., G.H. Glover, and B.A. Wandell, Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex, 1997. 7(2): p. 181-92.
18.Gardner, J.L., et al., Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci, 2008. 28(15): p. 3988-99.
19.Tootell, R.B., et al., Functional analysis of V3A and related areas in human visual cortex. J Neurosci, 1997. 17(18): p. 7060-78.
20.Kandel, E.R., J.H. Schwartz, and T.M. Jessell, Princuples of neural science, 4/e. 2000, USA: McGraw-hill companies.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top