|
[1] African elephant. Available at http://www.defenders.org/wildlife_and_habitat/wildlife/elephant.php. [2] Mica2 sensor board. Available at http://www.xbow.com. [3] Stargate:a platform x project. Available at http://platformx.sourceforge.net. [4] New nand flash application trends in 2007. Available at http://www.dramexchange.com/weeklyresearch/post/1/500.aspx, Jan. 2007. [5] Z. Abrams, A. Goel, and S. Plotkin. Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In Proc. Int’l Conf. Information Processing in Sensor Networks, pages 424–432, Apr. 2004. [6] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 11th Int’l Conf. on Data Engineering, pages 3–14, 1995. [7] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: A survey. Computer Networks, 38(4):393–422, 2002. [8] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor networks: a survey. IEEE Wireless Communications, 11(6):6–28, 2004. [9] J. N. Al-Karaki, R. Ul-Mustafa, and A. E. Kamal. Data aggregation in wireless sensor networks - exact and approximate algorithms. In Proc. IEEE Wksp. on High Performance Switching and Routing, pages 241–245, Oct. 2004. [10] A. Apostolico and G. Bejerano. Optimal amnesic probabilistic automata or how to learn and classify proteins in linear time and space. In Proc. 4th annual Int’l Conf. on Computational Molecular Biology, pages 25–32, 2000. [11] R. Avogadri and G. Valentini. Fuzzy ensemble clustering based on random projections for DNA microarray data analysis. Artifical Intelligenc Med, pages 1866–1881, Sep. 2008. [12] H. Ayad, O. A. Basir, andM. Kamel. A probabilisticmodel using information theoretic measures for cluster ensembles. In proc. 5th Int’l Wksp. on Multiple Classifier Systems, pages 144–153, Jun. 2004. [13] B., D. Estrin, and S. B. Wicker. The impact of data aggregation in wireless sensor networks. In Proc. 22nd Conf. Distributed Computing Systems, pages 241–245, Jul. 2002. [14] S. Baek, G. de Veciana, and X. Su. Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE J. on Selected Areas in Communications, 22(6):1130–1140, Aug. 2004. [15] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. Lai. Deploying wireless sensors to achieve bothcoverage and connectivity. In Proc. ACM Annual Int’l Symp. on Mobile Ad-Hoc Networking andComputing, pages 131–142, May 2006. [16] G. Bejerano and G. Yona. Variations on probabilistic suffix trees: statistical modeling and theprediction of protein families. Bioinformatics, 17(1):23–43, 2001. [17] D. Bolier. SIM : a c++ library for discrete event simulation. Available athttp://www.cs.vu.nl/ eliens/sim, Oct. 1995. [18] D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring semantic similarity between words usingweb search engines. In Proc. 16th Int’l World Wide Web Conf., pages 757–766, 2007. [19] M. Cardei, M. T. Thai, Y. Li, and W. Wu. Energy-efficient target coverage in wireless sensornetworks. In Proc. 24th IEEE Int’l Conf. Computer Communications, 2005. [20] Y. C. Chang, D. J. Lee, Y. Hong, J. K. Archibald, and D. Liang. A robust color image quantizationalgorithm based on knowledge reuse of k-means clustering ensemble. J. of Multimedia,3(2):20–27, Jun. 2008. [21] L. Chen, M. Tamer Özsu, and V. Oria. Robust and fast similarity search for moving objecttrajectories. In Proc. ACM SIGMOD Int’l Conf. on Management of Data, pages 491–502, 2005. [22] M.-S. Chen, J. S. Park, and P. S. Yu. Efficient data mining for path traversal patterns. Knowledgeand Data Engineering, 10(2):209–221, 1998. [23] C.-P. Cheng, G.-T. Lau, J. Pan, K.-H. Law, and A. Jones. Domain-specific ontology mapping bycorpus-based semantic similarity. In Proc. Scientific Foundations Wksp. of End-to-End ServiceUtility, Mar. 2007. [24] K. W. Church and P. Hanks. Word association norms, mutual information, and lexicography.Computational Linguistics, 16(1):22–29, 1990. [25] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. IEEE Computer, SpecialIssue in Sensor Networks, 37(8):41–49, Aug. 2004. [26] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierarchical in-network data aggregationwith quality guarantees. In Proc. 9th Int’l Conf. on Extending Database Technology, volume2992, pages 658–675, Mar. 2004. [27] Y. Diao, D. Ganesan, G. Mathur, and P. J. Shenoy. Rethinking data management for storagecentricsensor networks. In Proc. 3d Biennial Conf. on Innovative Data Systems Research, pages22–31, Nov. 2007. [28] S. Dubnov, G. Assayag, O. Lartillot, and G. Bejerano. Using machine-learning methods formusical style modeling. IEEE Computer Magazine, 36(10):73–80, Oct. 2003. [29] P. Dutta, D. Culler, and S. Shenker. Procrastination might lead to a longer and more useful life.In Proc. 6thWksp. on Hot Topics in Networks, Nov. 2007. [30] X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A clusterensemble approach. In Proc. 20th Int’l Conf. on Machine Learning, pages 1186–193, Jun. 2003. [31] A. L. N. Fred and A. K. Jain. Combining multiple clusterings using evidence accumulation.IEEE Trans. on Pattern Analysis and Machine Intelligence, 27(6):835–850, Jun. 2005. [32] D. Ganesan, B. Greenstein, D. Estrin, J. heidemann, and R. Govindan. Multiresolution storageand search in sensor networks. ACM Trans. on Storage, 1(3):277–315, Aug. 2005. [33] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory pattern mining. In Proc. 13thACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pages 330–339, 2007. [34] J. D. Gibson. The Mobile Communications Handbook, Second Edition. CRC Press, 1998. [35] B. Gloss, M. Scharf, and D. Neubauer. Location-dependent parameterization of a random directionmobility model. In Proc. IEEE 63rd Conf. on Vehicular Technology, volume 3, pages1068–1072, 2006. [36] J.-W. Han, J. Pei, B. Mortazavi-Asl, Q.-M. Chen, U. Dayal, and M.-C. Hsu. Freespan: frequentpattern-projected sequential pattern mining. In Proc. 6th ACMSIGKDD Int’l Con. on KnowledgeDiscovery and Data Mining, pages 355–359, 2000. [37] E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity. InformationProcessing Letters, 76(4-6):175–181, 2000. [38] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocolfor wireless microsensor networks. In Proc. 33rd Annual Hawaii Int’l Conf. on SystemSciences, pages 3005–3014, Jan. 2000. [39] J. Hightower and G. Borriello. Location systems for ubiquitous computing. Computer, 34(8):57–66, Aug. 2001. [40] B. Hoffmeister and T. Zeugmann. Text mining using markov chains of variable length. LectureNotes in Artificial Intelligence, pages 1–24, 2006. [41] X. Hong, M. Gerla, G. Pei, and C. Chiang. A group mobility model for ad hoc wireless networks.In Proc. 9th ACM/IEEE Int’l Symp. on Modeling, Analysis and Simulation of Wirelessand Mobile Systems, pages 53–60, Aug. 1999. [42] J.-L. Huang and M.-S. Chen. On the effect of group mobility to data replication in ad hocnetworks. IEEE Trans. on Mobile Computing, 5(5), May 2006. [43] J. Jeong, T. Hwang, T. He, and D. Du. Mcta: Target tracking algorithm based on minimal contourin wireless sensor networks. In Proc. 26th IEEE Int’l Conf. on Computer Communications, pages2371–2375, May 2007. [44] G. Karpis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregulargraphs. SIAM J. of Scientific Computing, 20(1):359âA˘ S¸–392, 1998. [45] D. Katsaros and Y. Manolopoulos. A suffix tree based prediction scheme for pervasive computingenvironments. In Panhellenic Conf. on Informatics, pages 267–277, Nov. 2005. [46] H. T. Kung and D. Vlah. Efficient location tracking using sensor networks. In Proc. Conf. IEEEWireless Communications and Networking, volume 3, pages 1954–1961, Mar. 2003. [47] C. Largeron-Leténo. Prediction suffix trees for supervised classification of sequences. PatternRecognition Letters, 24(16):3153–3164, 2003. [48] J.-G. Lee, J. Han, andK.-Y. Whang. Trajectory clustering: a partition-and-group framework. InProc. ACM SIGMOD Int’l Conf. on Management of Data, pages 593–604, 2007. [49] D.Li, K. D. Wong,Y. H. Hu, andA. M. Sayeed. Detection, classification, and tracking of targets.IEEE Signal Processing Magazine, 19(2):17–30, Mar. 2002. [50] Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proc. 10th ACM SIGKDD int’l conf.on Knowledge discovery and data mining, pages 617–622, 2004. [51] C.-Y. Lin,W.-C. Peng, and Y.-C. Tseng. Efficient in-network moving object tracking in wirelesssensor networks. IEEE Trans. on Mobile Computing, 5(8):1044–1056, Aug. 2006. [52] C.-Y. Lin and Y.-C. Tseng. Structures for in-network moving object tracking in wireless sensornetworks. In Proc. 1st Int’l Conf. on Broadband Networks, pages 718–727, Oct. 2004. [53] X. Liu, A. Krishnan, and A. Mondry. An entropy-based gene selection method for cancer classificationusing microarray data. BMC Bioinformatics, 6(76), Mar. 2005. [54] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power data storage for sensornetworks. In Proc. 5th Int’l Conf. on Information Processing in Sensor Networks, pages 374–381, Apr. 2006. [55] N. Meratnia and R. A. de By. A new perspective on trajectory compression techniques. In Proc.ISPRS Commission II and IV, WG II/5, II/6, IV/1 and IV/2 Joint Wksp. on Spatial, Temporal andMulti-dimensional Data Modelling and Analysis, Oct. 2003. [56] M. Morzy. Prediction of moving object location based on frequent trajectories. In Proc. 21thInt’l Symp. on Computer and Information Sciences, pages 583–592, Nov. 2006. [57] M. Morzy. Mining frequent trajectories of moving objects for location prediction. In Proc. 5thInt’l Conf. on Machine Learning and Data Mining in Pattern Recognition, pages 667–680, Jul.2007. [58] M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of moving objects. J. IntelligentInformation Systems, 27(3):267–289, 2006. [59] F. Osterlind and A. Dunkels. Approaching the maximum 802.15.4 multi-hop throughput. InProc. 5th Wksp. on Embedded Networked Sensors, 2008. [60] P. Sun, S. Chawla, and B. Arunsalam. Mining for outliers in sequential databases. In Proc. 6thSIAM Int’l Conf. on Data Mining, Apr. 2006. [61] S. Pandey, S. Dong, P. Agrawal, and K. Sivalingam. A hybrid approach to optimize node placementsin hierarchical heterogeneous networks. In Proc. IEEE Conf. onWireless Communicationsand Networking Conference, pages 3918–3923, Mar. 2007. [62] W.-C. Peng and M.-S. Chen. Developing data allocation schemes by incremental mining ofuser moving patterns in a mobile computing system. IEEE Trans. on Knowledge and DataEngineering, 15(1):70–85, Jan.-Feb. 2003. [63] W.-C. Peng, Y.-Z. Ko, and W.-C. Lee. On mining moving patterns for object tracking sensornetworks. In Proc. 7th Int’l Conf. on Mobile Data Management, 2006. [64] M. A. Perillo and W. Heinzelman. Optimal sensor management under energy and reliabilityconstraints. In Proc. IEEE Int’l Conf. Wireless Communications and Networking, volume 3,pages 1621–1626, Mar. 2003. [65] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual information based registration ofmedical images: a survey. IEEE Trans. on Medical Imaging, 22(8):986–1004, Aug. 2003. [66] S. S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed compression in a dense microsensornetwork. IEEE Signal Processing Magazine, 19(2):51–60, Mar. 2002. [67] D. Ron, Y. Singer, and N. Tishby. Learning probabilistic automata with variable memory length.In Proc. 7th Annual Conf. on Computational Learning Theory, Jul. 1994. [68] C. Roux and R. T. F. Bernard. Home range size, spatial distribution and habitat use of elephantsin two enclosed game reserves in the eastern cape province, south africa. African J. of Ecology,Oct. 2007. [69] C. M. Sadler and M. Martonosi. Data compression algorithms for energy-constrained devicesin delay tolerant networks. In Proc. ACM Conf. on Embedded Networked Sensor Systems, Nov.2006. [70] S. Santini and K. Romer. An adaptive strategy for quality-based data reduction in wireless sensornetworks. In Proc. 3rd Int’l Conf. on Networked Sensing Systems, pages 29–36, Jun. 2006. [71] G. Saporta and G. Youness. Comparing two partitions: some proposals and experiments. InProc. Computational Statistics, Aug. 2002. [72] A. Scaglione and S. D. Servetto. On the interdependence of routing and data compression inmulti-hop sensor networks. In Proc. 8th Annual Int’l Conf. onMobile computing and networking,pages 140–147, 2002. [73] C. E. Shannon. A mathematical theory of communication. J. Bell System Technical, 27:379–423,623–656, 1948. [74] G. Shannon, B. Page, K. Duffy, and R. Slotow. African elephant home range and habitat selectionin pongola game reserve, south africa. African Zoology, 41(1):37–44, Apr. 2006. [75] A. Silberstein. Push and pull in sensor network query processing. In Proc. Southeast Wksp. onData and Information Management, Mar. 2006. [76] M. Stoer and F. Wagner. A simple min-cut algorithm. J. of the ACM, 44(4):585–591, Jul. 1997. [77] A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining partitionings.In Proc. Conf. on Artificial Intelligence, pages 93âA˘ S¸–98, Jul. 2002. [78] J. Tang, B. Hao, and A. Sen. Relay node placement in large scale wireless sensor networks. J.of Computer Communications, Special Issue on Sensor Networks, 29(4):490–501, 2006. [79] Y. Theodoridis. The r-tree portal. Available at http://www.rtreeportal.org, Dec. 2005. [80] A. Topchy, A. K. Jain, and W. Punch. A mixture model for clustering ensembles. In Proc. Int’lSIAM Conf. on Data Mining, pages 379–390, 2004. [81] V. S. Tseng and K.W. Lin. Mining temporal moving patterns in object tracking sensor networks.In Proc. Int’l Wksp. on Ubiquitous Data Management, 2005. [82] V. S. Tseng and K. W. Lin. Energy efficient strategies for object tracking in sensor networks: Adata mining approach. J. Systems and Software, 80(10):1678–1698, 2007. [83] N. A. Vasanthi and S. Annadurai. Energy saving schedule for target tracking sensor networksto maximize the network lifetime. In Proc. 1st Int’l Conf. Communication System Software andMiddleware, pages 1–8, Jan. 2006. [84] G.Wang, H.Wang, J. Cao, andM. Guo. Energy-efficient dual prediction-based data gathering forenvironmental monitoring applications. In Proc. IEEEWireless Communication and NetworkingConf., Mar. 2007. [85] X. Wang, L. Ding, D. Bi, and S. Wang. Energy-efficient optimization of reorganization-enabledwireless sensor networks. Sensors, 7:1793–1816, 2007. [86] Y. Wang, E.-P. Lim, and S.-Y. Hwang. Efficient mining of group patterns from user movementdata. Data Knowledge Engineering, 57(3):240–282, 2006. [87] Y. Wang, P. Zhang, T. Liu, C. Sadler, and M. Martonosi. CRAWDADtrace princeton/zebranet/movement/baseoututm2 (v. 2007-02-14). Available athttp://crawdad.cs.dartmouth.edu/princeton/zebranet/movement/baseoutUTM2, feb 2007. [88] S. Watanabe. Pattern recognition as a quest for minimum entropy. Pattern Recog., 13(5):381–387, 1981. [89] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage and connectivityconfiguration for energy conservation in sensor networks. ACM Trans. Sensor Networks,1(1):36–72, Jan. 2005. [90] Y. Xu, J. Winter, and W.-C. Lee. Dual prediction-based reporting for object tracking sensornetworks. In Proc. 1st Annual Int’l Conf. on Mobile and Ubiquitous Systems: Networking andServices, pages 154–163, Aug. 2004. [91] Y. Xu, J.Winter, andW.-C. Lee. Prediction-based strategies for energy saving in object trackingsensor networks. In Proc. IEEE Int’l Conf. on Mobile Data Management, pages 346–357, 2004. [92] Y.-G. Xu and W.-C. Lee. Compressing moving object trajectory in wireless sensor networks.Int’l J. of Distributed Sensor Networks, 3(2):151–174, Apr. 2007. [93] Y. Xue, Y. Cui, and K. Nahrstedt. Maximizing lifetime for data aggregation in wireless sensornetworks. Mobile Networks and Applications, 10(6):853–864, 2005. [94] Y. and K. Chakrabarty. Sensor deployment and target localization based on virtual forces. InProc. 22nd Annual Join Conf. IEEE Computer and Communications Societies, volume 2, pages1293–1303, Apr. 2003. [95] H. Yang and B. Sikdar. A protocol for tracking mobile targets using sensor networks. In Proc.IEEE Int’l Wksp. on Sensor Network Protocols and Applications, pages 71–81, May 2003. [96] J. Yang andM. Hu. Trajpattern: Mining sequential patterns from imprecise trajectories of mobileobjects. In Proc. 10th Int’l Conf. on Extending Database Technology, pages 664–681,Mar. 2006. [97] J. Yang and W. Wang. CLUSEQ: Efficient and effective sequence clustering. In Proc. 19th Int’lConf. on Data Engineering, pages 101–112, Mar. 2003. [98] L. Yang, C. Feng, J. W. Rozenblit, and H. Qiao. Adaptive tracking in distributed wireless sensornetworks. In Proc. 13th Annual IEEE Int’l Symp. and Wksp. on Engineering of Computer BasedSystems, pages 103–111, Mar. 2006. [99] J. Yick, B. Mukherjee, and D. Ghosal. Analysis of a prediction-based mobility adaptive trackingalgorithm. In Proc. 2nd Int’l Conf. on Broadband Networks, pages 753–760, Oct. 2005. [100] M. Younis and K. Akkaya. Strategies and techniques for node placement in wireless sensornetworks: A survey. Ad Hoc Netw., 6(4):621–655, 2008. [101] L. Yuan and H. K. Kesavan. Minimum entropy and information measurement. IEEE Tran. onSystem, Man, and Cybernetics, 28(3), Aug. 1998. [102] H. Zhang and J. C. Hou. Maintaining sensing coverage and connectivity in large sensor networks.J. on Wireless Ad Hoc and Sensor Networks, 1(1-2):89–123, Jan. 2005. [103] W. Zhang and G. Cao. DCTC: Dynamic convoy tree-based collaboration for target tracking insensor networks. IEEE Trans. on Wireless Communications, 3(5):1689–1701, Sep. 2004. [104] L. Zhong, R. Shah, C. Guo, and J. Rabaey. An ultra-low power and distributed access protocolfor broadband wireless sensor networks. IEEE Broadband Wireless Summit, May 2001. [105] Z. Zhou, S. Das, and H. Gupta. Connected k-coverage problem in sensor networks. In Proc.13th Int’l Conf. Computer Communications and Networks, pages 373–378, Oct. 2004.
|