|
[1]G. Binning, C. F. Quate, and C. Gerber, “Atomic force microscope,” Physical Review Letters, vol. 56, pp. 930-933, 1986. [2]G. Binning, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Physical Review Letters, vol. 49, pp. 57-61, 1982. [3]D. W. Pohl, W. Denk, and M. Lanz. “Optical stethoscopy: Image recording with resolution ¸λ/20,” Applied Physics Letters, 44:651, 1984. [4]E. Meyer, H. J. Hug, and R. Bennewitz, “Scanning Probe Microscopy,” Springer, 2003. [5]C. C. Williams and H. K. Wickramasinghe, “Scanning thermal profiler,” Applied Physics Letters, vol. 49, no. 23, pp. 1587-1589, 1986. [6]N. Blanc, J. Brugger, N. F. d. Rooij, and U. Durig, “Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors,” Journal of Vacuum Science and Technology B, vol. 14, pp. 901-905, 1996. [7]Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by force microscopy with 1000 Å resolution,” Applied Physics Letters, vol. 50, no. 20, pp. 1455-1457, 1987. [8]C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang. “Atomic-scale friction of a tungsten tip on a graphite surface,” Physical Review Letters, 59(17):1942-1945, 1987. [9]Y. Martin, D. W. Abraham, and H. K. Wickramasinghe. “High-resolution capac- itance measurement and potentiometry by force microscopy.,” Applied Physics Letters, 52:1103, 1988. [10]C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe. “Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy,” Applied Physics Letters, 55:1662, 1989. [11]P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma. “Using force modulation to image surface elasticities with the atomic force microscope,” Nanotechnology, 2:103-106, 1991. [12]R. W. Stark, T. Drobek, and W. M. Heckle, “Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes,” Applied Physics Letters, vol. 74, no. 22, pp. 3296-3298, 1999. [13]K. Nakano, “Three-dimensional beam tracking for optical lever detection in atomic force microscopy,” Review of Scientific Instruments, vol. 71, no. 1, pp. 137-141, 2000. [14]P. J. Chen and S. T. Montgomery, “A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,” Ferroelectrics, vol. 23, pp. 199-208, 1980. [15]F. Quercioli, B. Tiribilli, and A. Bartoli, “Interferometry with optical pickups,” Optics Letters, vol. 24, pp. 670-672, 1999. [16]N. Blanc, J. Brugger, N. F. d. Rooij, and U. Durig. “ Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors,” Journal of Vacuum Science and Technology B, 14:901-905, 1996. [17]K. K. Leang and S. Devasia, “Iterative feedforward compensation of hysteresis in piezo positioners,” Proceedings of IEEE Conference on Decision and Control, pp. 2626-2631, 2003. [18]T. R. Armstrong and M. P. Fitzgerald. “An autocollimator based on the laser head of a compact disc player. Measurement Science and Technology,” 3:1072-1076, 1992. [19]M. Goldfarb and N. Celanovic, “Behavioral implications of piezoelectric stack actuators for control of micromanipulation,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 226-231, 1996. [20]K. Y. Huang, E. T. Hwu, H. Y. Chow, and S. K. Hung. “Development of an optical pickup system for measuring the displacement of the micro cantilever in scanning probe microscope,” IEEE International Conference on Mechatronics, pages 695-698, 2005. [21]E. T. Hwu, K. Y. Huang S. K. Hung, and I. S. Hwang. “Measurement of cantilever displacement using a compact disk/digital versatile disk pickup head.” International Conference on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, pages 2368-2371, 2005. [22]J. Tamayo and L. Lechuga. “Increasing the q factor in the constant excitation mode of frequency-modulation atomic force microscopy in liquid,” Applied Physics Letters, 82:2919, 2003. [23]R. W. Stark, G. Schitter, and A. Stemmer. “Tuning the interaction forces in tapping mode atomic force microscopy,” Physical Review B, 68(8):85401, 2003. [24]H. Holscher, D. Ebeling, and U. D. Schwarz. “Theory of q-controlled dynamic force microscopy in air,” Journal of Applied Physics, 99:084311, 2006. [25]T. R. Rodriguez and R. Garcia. “Theory of q control in atomic force microscopy.,” Applied Physics Letters, 82:4821, 2003. [26]Y. Martin, C. C. Williams, and H. K. Wickramasinghe. “Atomic force microscope-force mapping and profiling on a sub 100- scale,” Journal of Applied Physics, 61:4723, 1987. [27]B. M. Chen, T. H. Lee, C. C. Hang, Y. Guo, and S. Weerasooriya. “An H1 almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis.” IEEE Transactions on Control Systems Technology, 7(2):160-174, 1999. [28]K. K. Leang and S. Devasia. “Iterative feedforward compensation of hysteresis in piezo positioners.” Proceedings of the 42nd IEEE Conference on Decision and Control, 3:2626-2631, 2003. [29]K. Furutani, M. Urushibata, and N. Mohri. “Improvement of control method for piezoelectric actuator by combining induced charge feedback with inverse transfer function compensation.” Proceedings of the 1998 IEEE international Conference on Robotics & Automation Leuven, Belgium., 2:1504-1509, 1998. [30]K. Takahashi, K. Tateishi, Y. Tomita, and S. Ohsawa. “Application of the sliding-mode controller to optical disk drives.” Japanese Journal of Applied Physics, 43(no. 7 b):4801-4805, 2004. [31]C. L. Hwang, Y. M. Chen, and C. Jan. “Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure con- trol.” IEEE Transactions on Control Systems Technology, 13(1):56-66, 2005. [32]P. Krejci, K. Kuhnen, and B. WIAS. “Inverse control of systems with hysteresis and creep.” IEEE Proceedings on Control Theory and Applications, 148(3):185-192, 2001. [33]J. Tamayo and R. Garcia. “Deformation, contact time, and phase contrast in tapping mode scanning force microscopy.” Langmuir, 12:4430-4435, 1996. [34]M. Marth, D. Maier, J. Honerkamp, R. Brandsch, and G. Bar. “A unifying view on some experimental effects in tapping-mode atomic force microscopy.” Journal of Applied Physics, 85:7030, 1999. [35]C. A. J. Putman, K. O. Van der Werf, B. G. De Grooth, N. F. Van Hulst, and J. Greve. “Tapping mode atomic force microscopy in liquid.” Applied Physics Letters, 64:2454, 1994. [36]P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, and C. B. Prater. “Tapping mode atomic force microscopy in liquids.” Applied Physics Letters, 64:1738, 1994. 10 [37]T. R. Rodriguez and R. Garcia. “Theory of q control in atomic force microscopy.,” Applied Physics Letters, 82:4821, 2003. [38]H. Holscher, D. Ebeling, and U. D. Schwarz. “Theory of q-controlled dynamic force microscopy in air,” Journal of Applied Physics, 99:084311, 2006. [39]Y. Martin, C. C. Williams, and H. K. Wickramasinghe. “Atomic force microscope-force mapping and profiling on a sub 100- scale,” Journal of Applied Physics, 61:4723, 1987. [40]P. A. Ioannou and J. Sun. Robust Adaptive Control. Prentica Hall, 1998.
|