跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:嚴世勳
研究生(外文):yen shih-hsun
論文名稱:新型原子力顯微鏡使用DVD讀取頭在水裡之應用
論文名稱(外文):Apply Novel Tapping Mode Atomic Force Microscope with DVD Pickup Head in Fluid
指導教授:傅立成傅立成引用關係
指導教授(外文):Li-Chen Fu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:100
中文關鍵詞:原子力顯微鏡適應性滑動模式控制光碟讀取頭適應性Q控制器
外文關鍵詞:AFMadaptive sliding-mode controlDVD pickup headadaptive Q-control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出的原子力顯微鏡(atomic force microscope),是可以在液體裡利用光碟讀取頭(DVD pick-up-head),來量測探針懸臂撓曲的掃樣品型原子力顯微鏡系統。為了實現上述的系統,我們設計了一個適應性Q控制器來控制樣品與探針之間的接觸力,藉著增加Q因子來增加探針在水裡的振幅,可以解決探針在水裡由於阻尼過大使得探針難以震盪的問題。此外,這個方法也可以減低樣品與探針之間的接觸力,這樣在掃描柔軟的生物細胞時,也不會造成破壞,所以可以得到細胞更真實的表面形貌。
另外我們還設計了一個新的原子力顯微鏡機構並且使用適應性滑動模式控制器(adaptive sliding-mode controller),用以取代傳統上人工手動調整參數的正比積分控制器(proportion-integration controller)。使用這種控制器,任何使用者都可以輕鬆得到高品質的原子力顯微鏡影像。
藉著調整光路對焦系統以及合適的控制器,我們可以得到不同的液體環境裡,準確探針的垂直振幅值。而使用光學讀取頭來量測懸臂的撓曲,更可以大大的減少整個原子力顯微鏡機台的體積以及量測的誤差。
The system proposed here is a tapping mode scanning sample type Atomic Force Microscope (AFM) equipped with a CD/DVD pick-up-head (PUH) used to measure the deflection of the cantilever beam of the probe in the liquid. In order to realize the system mentioned above, we design an adaptive Quality-Factor-controller (Q-controller) to modulate the interaction force between the tip and the sample. And, increasing the quality factor will increase the oscillation amplitude of the probe in liquid and overcome the problem with high damping ratio in the fluid which tends to make the probe hard to oscillate. It is noteworthy that the tip-sample force can be decreased if the scanning is through tapping mode whereby the sample surface will not be easily hurt due to such tip-sample contact. Hence, this type of AFM can also be used to scan soft samples, which may lead to acquire more realistic topography.
To implement the above systems, we have designed a novel AFM mechanism and used an adaptive sliding-mode controller which replaces the traditional manually-tuned proportion-integration (PI) controller. By using this controller, any user can still acquire high quality AFM images easily.
This AFM will be used to help to observe the continuous interaction between the biology sample and the probe tip. Through adjusting the light path system and applying the controller, we can correctly measure the displacement of the probe in vertical direction in different kinds of fluid. The use of DVD pickup head minimizes the volume of the hardware system, and thus reduces the measurement error caused by heat expansion.
For testing the system capability and analyzing the biomorphic change of the sample in liquid, we have conducted a series of experiments, and the results can help us to understand more about the mechanism of the sample in liquid.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Motivation and Goal 1
1.2 Related Work 6
1.3 Contributions 14
1.4 Thesis Organization 15
Chapter 2 Preliminaries 16
2.1 Basic Theories of Interaction Force In Liquid 16
2.1.1 Van der Waals Interaction Principle 16
2.1.2 Electrostatic Forces 25
2.1.3 Derjaguin-Muller-Toporov theory 30
2.1.4 Thermal Fluctuation Forces 31
2.2 Basic Principles of Piezoelectricity 32
2.2.1 Hysteresis Phenomenon 33
2.2.2 Tube Scanner 35
2.3 Basic Principles of CD/DVD Pickup Head 38
2.3.1 Sensing Methodology 40
2.3.2 Focusing and Tracking Actuators 41
2.4 Operation Principle of AFM 43
2.4.1 Contact Mode 43
2.4.2 Tapping Mode 45
Chapter 3 Scanning Sample Type AFM System Design and Controller Design 49
3.1 Hardware Design 49
3.2 Software Design 60
3.3 Adaptive Q Controller Design 61
3.4 Adaptive Sliding-Mode Controller Design 70
3.5 Numerical Simulation 76
Chapter 4 Experiment 79
4.1 Hardware Setup 79
4.2 Experimental Result 85
4.2.1 System Characteristics 85
4.2.2 Scanning Result of the Calibration Grating 86
Chapter 5 Conclusions 94
REFERENCE 95
[1]G. Binning, C. F. Quate, and C. Gerber, “Atomic force microscope,” Physical Review Letters, vol. 56, pp. 930-933, 1986.
[2]G. Binning, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Physical Review Letters, vol. 49, pp. 57-61, 1982.
[3]D. W. Pohl, W. Denk, and M. Lanz. “Optical stethoscopy: Image recording with resolution ¸λ/20,” Applied Physics Letters, 44:651, 1984.
[4]E. Meyer, H. J. Hug, and R. Bennewitz, “Scanning Probe Microscopy,” Springer, 2003.
[5]C. C. Williams and H. K. Wickramasinghe, “Scanning thermal profiler,” Applied Physics Letters, vol. 49, no. 23, pp. 1587-1589, 1986.
[6]N. Blanc, J. Brugger, N. F. d. Rooij, and U. Durig, “Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors,” Journal of Vacuum Science and Technology B, vol. 14, pp. 901-905, 1996.
[7]Y. Martin and H. K. Wickramasinghe, “Magnetic imaging by force microscopy with 1000 Å resolution,” Applied Physics Letters, vol. 50, no. 20, pp. 1455-1457, 1987.
[8]C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang. “Atomic-scale friction of a tungsten tip on a graphite surface,” Physical Review Letters, 59(17):1942-1945, 1987.
[9]Y. Martin, D. W. Abraham, and H. K. Wickramasinghe. “High-resolution capac-
itance measurement and potentiometry by force microscopy.,” Applied Physics
Letters, 52:1103, 1988.
[10]C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe. “Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy,” Applied Physics Letters, 55:1662, 1989.
[11]P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, and P. K. Hansma. “Using force modulation to image surface elasticities with the atomic force microscope,” Nanotechnology, 2:103-106, 1991.
[12]R. W. Stark, T. Drobek, and W. M. Heckle, “Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes,” Applied Physics Letters, vol. 74, no. 22, pp. 3296-3298, 1999.
[13]K. Nakano, “Three-dimensional beam tracking for optical lever detection in atomic force microscopy,” Review of Scientific Instruments, vol. 71, no. 1, pp. 137-141, 2000.
[14]P. J. Chen and S. T. Montgomery, “A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity,” Ferroelectrics, vol. 23, pp. 199-208, 1980.
[15]F. Quercioli, B. Tiribilli, and A. Bartoli, “Interferometry with optical pickups,” Optics Letters, vol. 24, pp. 670-672, 1999.
[16]N. Blanc, J. Brugger, N. F. d. Rooij, and U. Durig. “ Scanning force microscopy in
the dynamic mode using microfabricated capacitive sensors,” Journal of Vacuum
Science and Technology B, 14:901-905, 1996.
[17]K. K. Leang and S. Devasia, “Iterative feedforward compensation of hysteresis in piezo positioners,” Proceedings of IEEE Conference on Decision and Control, pp. 2626-2631, 2003.
[18]T. R. Armstrong and M. P. Fitzgerald. “An autocollimator based on the laser head of a compact disc player. Measurement Science and Technology,” 3:1072-1076, 1992.
[19]M. Goldfarb and N. Celanovic, “Behavioral implications of piezoelectric stack actuators for control of micromanipulation,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 226-231, 1996.
[20]K. Y. Huang, E. T. Hwu, H. Y. Chow, and S. K. Hung. “Development of an
optical pickup system for measuring the displacement of the micro cantilever in
scanning probe microscope,” IEEE International Conference on Mechatronics,
pages 695-698, 2005.
[21]E. T. Hwu, K. Y. Huang S. K. Hung, and I. S. Hwang. “Measurement of cantilever displacement using a compact disk/digital versatile disk pickup head.” International Conference on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques, pages 2368-2371, 2005.
[22]J. Tamayo and L. Lechuga. “Increasing the q factor in the constant excitation mode of frequency-modulation atomic force microscopy in liquid,” Applied Physics Letters, 82:2919, 2003.
[23]R. W. Stark, G. Schitter, and A. Stemmer. “Tuning the interaction forces in tapping mode atomic force microscopy,” Physical Review B, 68(8):85401, 2003.
[24]H. Holscher, D. Ebeling, and U. D. Schwarz. “Theory of q-controlled dynamic force microscopy in air,” Journal of Applied Physics, 99:084311, 2006.
[25]T. R. Rodriguez and R. Garcia. “Theory of q control in atomic force microscopy.,” Applied Physics Letters, 82:4821, 2003.
[26]Y. Martin, C. C. Williams, and H. K. Wickramasinghe. “Atomic force microscope-force mapping and profiling on a sub 100- scale,” Journal of Applied Physics, 61:4723, 1987.
[27]B. M. Chen, T. H. Lee, C. C. Hang, Y. Guo, and S. Weerasooriya. “An H1 almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis.” IEEE Transactions on Control Systems Technology, 7(2):160-174, 1999.
[28]K. K. Leang and S. Devasia. “Iterative feedforward compensation of hysteresis in piezo positioners.” Proceedings of the 42nd IEEE Conference on Decision and Control, 3:2626-2631, 2003.
[29]K. Furutani, M. Urushibata, and N. Mohri. “Improvement of control method for piezoelectric actuator by combining induced charge feedback with inverse transfer function compensation.” Proceedings of the 1998 IEEE international Conference on Robotics & Automation Leuven, Belgium., 2:1504-1509, 1998.
[30]K. Takahashi, K. Tateishi, Y. Tomita, and S. Ohsawa. “Application of the sliding-mode controller to optical disk drives.” Japanese Journal of Applied Physics, 43(no. 7 b):4801-4805, 2004.
[31]C. L. Hwang, Y. M. Chen, and C. Jan. “Trajectory tracking of large-displacement piezoelectric actuators using a nonlinear observer-based variable structure con- trol.” IEEE Transactions on Control Systems Technology, 13(1):56-66, 2005.
[32]P. Krejci, K. Kuhnen, and B. WIAS. “Inverse control of systems with hysteresis and creep.” IEEE Proceedings on Control Theory and Applications, 148(3):185-192, 2001.
[33]J. Tamayo and R. Garcia. “Deformation, contact time, and phase contrast in tapping mode scanning force microscopy.” Langmuir, 12:4430-4435, 1996.
[34]M. Marth, D. Maier, J. Honerkamp, R. Brandsch, and G. Bar. “A unifying view on some experimental effects in tapping-mode atomic force microscopy.” Journal of Applied Physics, 85:7030, 1999.
[35]C. A. J. Putman, K. O. Van der Werf, B. G. De Grooth, N. F. Van Hulst, and J. Greve. “Tapping mode atomic force microscopy in liquid.” Applied Physics Letters, 64:2454, 1994.
[36]P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, and C. B. Prater. “Tapping mode atomic force microscopy in liquids.” Applied Physics Letters, 64:1738, 1994. 10
[37]T. R. Rodriguez and R. Garcia. “Theory of q control in atomic force microscopy.,” Applied Physics Letters, 82:4821, 2003.
[38]H. Holscher, D. Ebeling, and U. D. Schwarz. “Theory of q-controlled dynamic force microscopy in air,” Journal of Applied Physics, 99:084311, 2006.
[39]Y. Martin, C. C. Williams, and H. K. Wickramasinghe. “Atomic force microscope-force mapping and profiling on a sub 100- scale,” Journal of Applied Physics, 61:4723, 1987.
[40]P. A. Ioannou and J. Sun. Robust Adaptive Control. Prentica Hall, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top