跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 12:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志鵬
研究生(外文):Chi-Pang Lam
論文名稱:以人為本的機器人導航-實現機器人與人和諧共存
論文名稱(外文):Human-Centered Robot Navigation --- Toward a Harmoniously Coexisting Multi-Human and Multi-Robot Environment
指導教授:傅立成傅立成引用關係
指導教授(外文):Li-Chen fu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:53
中文關鍵詞:以人為本的導航機器人導航人機互動和諧共存
外文關鍵詞:Human-Centered NavigationMobile Robot NavigationHuman-Robot InteractionHarmonious Coexistence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
這篇論文提出一個基於人類狀態及其他機器人狀態的機器人導航演算法,而這個導航演算法是為了實現人類與機器人的和諧共存。隨著機器人應用的增加,未來將有越來越多的機器人進入我們的生活空間,然而機器人在多人類及多機器人的環境中的導航術很少被這領域的研究員所考量。當機器人在一個存在人類及不同功用的機器人環境中進行導航時,機器人應不單只具有基本的避障及到達目的地的能力,在其導航過程中還必須注意其行動是否對人類或處於同一環境中的其他機器人構成干擾。為了解決這問題,我們提出了一些和諧規條讓機器人遵守,這些規條讓一個機器人在多人及多機器人環境中能安全及暢順地導航。根據這些規條,我們提出了一個以人為本的敏感性導航術(HCSN)。心理學上提出人類都有其個人空間,這個個人空間的大小是根據人與人的關係及其心理因素所決定的,HCSN考慮人類的個人空間以及其他機器人的工作空間,我們把這些空間模擬成有優先權的敏感場,機器人把這些敏感場作為導航上的考量,達到有社會接受度的行動。
This paper proposes a navigation algorithm that considers the states of humans and other robots in order to achieve harmonious coexistence between robots and humans. Robot navigation in the presence of humans and other robots is rarely to be considered in the field of robotics so far. When navigating through humans and robots with different functions, a robot should not only pay attention to obstacle avoidance and goal seeking, it should also take care of whether it interferes with other people or robots. To deal with this problem, we propose several harmonious rules, which guarantee a safe and smooth navigation in multi-human and multi-robot (MHMR) environment. Based on those rules, a practical navigation method–human-centered sensitive navigation (HCSN)–is proposed. HCSN considers the fact that both humans and robots have sensitive zones depending on their security regions or on psychological feeling of people. We model these zones as various sensitive fields with priorities, whereby robots tend to yield socially acceptable movements.
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Background and Related Work 2
1.2 System Overview 3
1.3 Contributions 5
1.4 Thesis Organization 6
Chapter 2 Preliminaries 7
2.1 Artificial Potential Field Method 7
2.2 Nearness Diagram Navigation 8
2.3 Finite State Machine 11
2.4 Proxemics 13
Chapter 3 Human-Centered Sensitive Navigation 15
3.1 Harmonious Rules 15
3.1.1 Six Harmonious Rules 15
3.1.2 Safety and Deadlock Analysis 16
3.2 Various Sensitive Fields 18
3.3 Human-Centered Sensitive Navigation 23
3.3.1 Communication Signal between Robots 23
3.3.2 Sensitive Fields Sensing 24
3.3.3 Self-Situation Identification 28
3.3.4 Motion Planner 30
3.3.5 Complexity Analysis 35
Chapter 4 Simulations and Experimental Results 36
4.1 Simulations 36
4.1.1 Simulation 1 36
4.1.2 Simulation 2 37
4.1.3 Simulation 3 39
4.1.4 Simulation 4 42
4.2 Experimental Results 43
4.2.1 Experiment 1 44
4.2.2 Experiment 2 46
Chapter 5 Conclusions and Future Works 49
REFERENCE 51
[1]Khatib, Oussama, "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots," The International Journal of Robotics Research 1986 5: 90-98
[2]Koren, Y. and J. Borenstein (1991). Potential field methods and their inherent limitations for mobile robot navigation. Robotics and Automation, 1991. Proceedings., 1991 IEEE International Conference on.
[3]Javier, M. and L. Montano (2004). "Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios." Robotics and Automation, IEEE Transactions on 20(1): 45-59.
[4]Fox, D., W. Burgard, et al. (1997). "The dynamic window approach to collision avoidance." Robotics & Automation Magazine, IEEE 4(1): 23-33.
[5]LaValle, S. M. and J. J. Kuffner, Jr. (2001). Randomized Kinodynamic Planning. 20: 378-400.
[6]Lee, J. H., K. Abe, et al. (2008). Collision-free navigation based on people tracking algorithm with biped walking model. Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.
[7]Alami, R., I. Belousov, et al. (2000). Diligent: towards a human-friendly navigation system. Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on.
[8]Althaus, P., H. Ishiguro, et al. (2004). Navigation for human-robot interaction tasks. Robotics and Automation, 2004. Proceedings. ICRA ''04. 2004 IEEE International Conference on.
[9]Sisbot, E. A., L. F. Marin-Urias, et al. (2007). "A Human Aware Mobile Robot Motion Planner." Robotics, IEEE Transactions on 23(5): 874-883.
[10]Topp, E. A. and H. I. Christensen (2005). Tracking for following and passing persons. Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on.
[11]Takeshi, S. and H. Hideki (2006). Human Observation Based Mobile Robot Navigation in Intelligent Space. Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on.
[12]Schulz, D., W. Burgard, et al. (2003). People Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters. 22: 99-116.
[13]Walters, M. L., K. Dautenhahn, et al. (2005). The influence of subjects'' personality traits on personal spatial zones in a human-robot interaction experiment. Robot and Human Interactive Communication, 2005. ROMAN 2005. IEEE International Workshop on.
[14]Edward T. Hall, "The Hidden Dimension," (1966)
[15]Kanayama, Y., Y. Kimura, et al. (1990). A stable tracking control method for an autonomous mobile robot. Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on.
[16]Durham, J. W. and F. Bullo (2008). Smooth Nearness-Diagram Navigation. Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.
[17]Coffman, E. G., M. Elphick, et al. (1971). System Deadlocks, ACM. 3: 67-78.
[18]Borenstein, J. and Y. Koren (1991). "The vector field histogram-fast obstacle avoidance for mobile robots." Robotics and Automation, IEEE Transactions on 7(3): 278-288.
[19]Svenstrup, M., S. Tranberg, et al. (2009). "Pose Estimation and Adaptive Robot Behaviour for Human-Robot Interaction. " Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, Kobe, Japan.
[20]Minguez, J., J. Osuna, et al. (2004). A "divide and conquer" strategy based on situations to achieve reactive collision avoidance in troublesome scenarios. Robotics and Automation, 2004. Proceedings. ICRA ''04. 2004 IEEE International Conference on.
[21]Horiuchi, T., S. Thompson, et al. (2007). Pedestrian tracking from a mobile robot using a laser range finder. Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on.
[22]Pacchierotti, E., H. I. Christensen, et al. (2006). Design of an Office-Guide Robot for Social Interaction Studies. Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on.
[23]Atreya, A., B. Cattle, et al. (2007). Prospect Eleven : Princeton University’s Entry in the 2005 DARPA Grand Challenge. The 2005 DARPA Grand Challenge: 349-361.
[24]Clodic, A., S. Fleury, et al. (2006). Rackham: An Interactive Robot-Guide. Robot and Human Interactive Communication, 2006. ROMAN 2006. The 15th IEEE International Symposium on.
[25]E. T. Hall, (1968). Proxemics. Current Anthropology 9(2-3): 83-108. 1968
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top