跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周銘翊
研究生(外文):Ming-Yi Chou
論文名稱:斑馬魚低溫適應之機制
論文名稱(外文):Mechanisms of Acclimation to Low Temperature in Zebrafish (Danio rerio)
指導教授:黃鵬鵬黃鵬鵬引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:132
中文關鍵詞:低溫適應離子細胞離子調節
外文關鍵詞:Cold acclimationIonocyteIon regulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:408
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
有別於對低溫敏感的哺乳動物,外溫動物在體溫降低時仍能存活。研究外溫動物能夠在低溫環境下存活、生長以及生殖的原因,一直是生物學家探討的研究主題。我們將斑馬魚以短期及長期低溫處理,並以生物晶片的方法比較低溫處理與常溫下鰓組織的基因表現相。結果顯示與離子調節相關的基因在低溫下大量被誘導。進一步分析低溫對於鰓離子調節及酸鹼平衡的影響,發現在低溫環境下,斑馬魚鰓上離子細胞內的運輸蛋白及與離子細胞分化相關的轉錄因子,皆大量表現,顯示斑馬魚能夠主動調節生理反應,以應付在低溫環境下離子流失及酸鹼平衡的問題。以鈣離子調節為例,在低溫環境下,上皮鈣離子通道(ECaC)的基因表現大量增加,同時伴隨著鈣離子流入速率增加,表示在低溫適應過程中,這是一種補償的生理反應。在以Phospho-histone H3偵測細胞增生與以TUNEL偵測細胞凋亡的實驗中發現,在低溫處理下,除了細胞分裂速率降低之外,細胞凋亡的情形也降低,顯示斑馬魚面對低溫環境時,可以藉由產生更多的離子細胞以維持鰓組織的功能,藉以適應低溫環境。
我們進一步比較斑馬魚鰓組織及腦組織對低溫的反應。主成分分析法(PCA)的結果顯示,斑馬魚鰓組織在長期及短期低溫處理採取不同的策略,相較於鰓組織,腦部則相對穩定。結合統計、聚類分析及SNEA分析結果發現,在低溫的環境下,鰓組織表現較高的細胞活性及緊迫反應,而腦組織則表現較高的細胞保護相關基因。我們進一步研究在低溫適應中,鰓組織與腦組織之間的交互作用。以生物晶片的方法,我們發現一個與isotocin神經發育、分化相關的轉錄因子Orthopedia的基因表現受到低溫的誘導,進而發現一群與isotocin神經分化相關的基因在低溫環境下皆大量表現。而在注射Orthopedia反義核酸以弱化Orthopedia蛋白質表現後,與離子細胞相關的基因、離子細胞的數目及離子吸收功能皆受到抑制。接著我們以cDNA cloning的方法選殖了二型isotocin的接受器,並測量這二型接受器在鰓上的基因表現,結果發現在低溫的環境下,這二型isotocin接受器的基因表現量均大量增加。這些結果顯示下視丘神經性荷爾蒙isotocin在離子及滲透壓調節機制上,扮演著重要的角色。綜上所述,本研究除了篩選出在斑馬魚鰓及腦組織中受到低溫調節的基因,更提供了分子生理的證據說明鰓及腦組織在低溫適應中的交互作用。
Abstract
Ectothermic vertebrates are different from mammals that are sensitive to hypothermia and they have to maintain core temperature for survival. Why and how ectothermic animals can survive, grow and reproduce in low temperature have been for a long time a scientifically challenging and important inquiry to biologists. We used a microarray to profile the gill transcriptome in zebrafish (Danio rerio) after exposure to low temperature. Adult zebrafish were acclimated to a low temperature of 12 °C for 1 day only (1-d) and up to 30 days (30-d), and the gill transcriptome was compared to wild types by oligonucleotide microarray hybridization. The gill transcriptome profiles revealed that ionoregulation-related genes were highly upregulated in cold-acclimated zebrafish. This paved way to investigate the role of ionoregulatory genes in zebrafish gills during cold acclimation. Cold acclimation caused upregulation of genes that are essential for ionocyte specification, differentiation, ionoregulation, acid/base balance, and increased cell number among cells expressing these genes. For instance, epithelial Ca2+ channel (ECaC), an ionoregulatory gene mRNA expression was increased in parallel with the level of Ca2+ influx, revealing a functional compensation after long-term acclimation to cold. Phospho-histone H3 and TUNEL staining showed that the cell turnover rate was retarded in cold-acclimated gills. These results suggest that gills may sustain their functions by yielding mature ionocytes from preexisting undifferentiated progenitors in low-temperature environments.
We further adopt a transcript screening approach to compare the cold responses in zebrafish gills and brain. Principle component analysis of the gene expression profiles indicated that gills developed different strategies depending on the durations of cold
exposure while brain remained more stable. Based on ANOVA, clustering analysis, and sub-network enrichment analysis (SNEA), gill exhibits higher cell activities and 3 stress responses while brain activates more genes related to cellular protection during cold acclimation. We also extended the study on the interactions between these two organs during cold acclimation. A transcription factor gene, orthopedia (otp), which is associated with isotocin neuronal development, was stimulated by cold in the zebrafish brain. A group of isotocin-related genes were also stimulated by cold in the zebrafish brain. Otp knockdown decreased the mRNA expressions of these ionocyte-related genes, the numbers of ionocytes, and ion uptake functions. Moreover, two isotocin receptor isoforms were cloned, and the mRNA expressions of these two genes were found to be upregulated in zebrafish gills during cold acclimation. These data suggest that the hypothalamic neurohormone, isotocin, plays some roles in the control pathways of iono/osmoregulatory mechanisms in zebrafish. Taken together, the present study not only identify cold induced genes in zebrafish gill and brain but also provide molecular evidences to elucidate the interactions between these two organs during cold acclimation.
Contents

中文摘要 1
Abstract 2
Background 4
Chapter 1. Acclimation to cold: a functional genomic analysis of gill 11
transcriptome in zebrafish (Danio rerio)
Reference 1 32
Chapter 2. Comparison of gene expressions in zebrafish (Danio rerio) 45
brain and gills during cold acclimation
Reference 2 59
Chapter 3. A hypothalamic neuropeptide participates in ion regulation 73
in zebrafish (Danio rerio) during cold acclimation
Reference 3 90
Conclusions and perspectives 104
Supplementary tables 106
References
Acampora, D., Postiglione, M. P., Avantaggiato, V., Di Bonito, M., Vaccarino, F. M., Michaud, J. and Simeone, A. (1999). Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev 13, 2787-800.
Blechman, J., Borodovsky, N., Eisenberg, M., Nabel-Rosen, H., Grimm, J. and Levkowitz, G. (2007). Specification of hypothalamic neurons by dual regulation of the homeodomain protein Orthopedia. Development 134, 4417-26.
Chang, I. C. and Hwang, P. P. (2004). Cl- uptake mechanism in freshwater-adapted tilapia (Oreochromis mossambicus). Physiol Biochem Zool 77, 406-14.
Chou, C. L., DiGiovanni, S. R., Luther, A., Lolait, S. J. and Knepper, M. A. (1995). Oxytocin as an antidiuretic hormone. II. Role of V2 vasopressin receptor. Am J Physiol 269, F78-85.
Chou, M. Y., Hsiao, C. D., Chen, S. C., Chen, I. W., Liu, S. T. and Hwang, P. P. (2008). Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. J Exp Biol 211, 3077-84.
Devost, D., Wrzal, P. and Zingg, H. H. (2008). Oxytocin receptor signalling. Prog Brain Res 170, 167-76.
Eaton, J. L. and Glasgow, E. (2006). The zebrafish bHLH PAS transcriptional regulator, single-minded 1 (sim1), is required for isotocin cell development. Dev Dyn 235, 2071-82.
Eaton, J. L. and Glasgow, E. (2007). Zebrafish orthopedia (otp) is required for isotocin cell development. Dev Genes Evol 217, 149-58.
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Ferguson, J. N., Young, L. J. and Insel, T. R. (2002). The neuroendocrine basis of social recognition. Front Neuroendocrinol 23, 200-24.
Godwin, J., Sawby, R., Warner, R. R., Crews, D. and Grober, M. S. (2000). Hypothalamic arginine vasotocin mRNA abundance variation across sexes and with sex change in a coral reef fish. Brain Behav Evol 55, 77-84.
Goodson, J. L. and Bass, A. H. (2000). Forebrain peptides modulate sexually polymorphic vocal circuitry. Nature 403, 769-72.
Guibbolini, M. E. and Avella, M. (2003). Neurohypophysial hormone regulation of Cl- secretion: physiological evidence for V1-type receptors in sea bass gill respiratory cells in culture. J Endocrinol 176, 111-9.
Hausmann, H., Meyerhof, W., Zwiers, H., Lederis, K. and Richter, D. (1995). Teleost isotocin receptor: structure, functional expression, mRNA distribution and phylogeny. FEBS Lett 370, 227-30.
Hirose, S., Kaneko, T., Naito, N. and Takei, Y. (2003). Molecular biology of major components of chloride cells. Comp Biochem Physiol B Biochem Mol Biol 136, 593-620.
Hochachka, P. W. (1986). Defense strategies against hypoxia and hypothermia. Science 231, 234-41.
Hochachka, P. W. (1988). Metabolic-Coupled, Channel-Coupled, and Pump-Coupled Functions - Constraints and Compromises of Coadaptation. Can J Zool 66, 1015-1027.
Horng, J. L., Lin, L. Y., Huang, C. J., Katoh, F., Kaneko, T. and Hwang, P. P. (2007). Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol 292, R2068-76.
Hsiao, C. D., You, M. S., Guh, Y. J., Ma, M., Jiang, Y. J. and Hwang, P. P. (2007). A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS ONE 2, e302.
Hwang, P. P. and Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-97.
Insel, T. R., Young, L. and Wang, Z. (1997). Central oxytocin and reproductive behaviours. Rev Reprod 2, 28-37.
Katoh, F., Hyodo, S. and Kaneko, T. (2003). Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish Fundulus heteroclitus, adapted to a low ion environment. J Exp Biol 206, 793-803.
Kleszczynska, A., Vargas-Chacoff, L., Gozdowska, M., Kalamarz, H., Martinez-Rodriguez, G., Mancera, J. M. and Kulczykowska, E. (2006). Arginine vasotocin, isotocin and melatonin responses following acclimation of gilthead sea bream (Sparus aurata) to different environmental salinities. Comp Biochem Physiol A Mol Integr Physiol 145, 268-73.
Lee, K. M., Kaneko, T., Katoh, F. and Aida, K. (2006). Prolactin gene expression and gill chloride cell activity in fugu Takifugu rubripes exposed to a hypoosmotic environment. Gen Comp Endocrinol 149, 285-93.
Li, C., Wang, W., Summer, S. N., Westfall, T. D., Brooks, D. P., Falk, S. and Schrier, R. W. (2008). Molecular mechanisms of antidiuretic effect of oxytocin. J Am Soc Nephrol 19, 225-32.
Lin, L. Y., Horng, J. L., Kunkel, J. G. and Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol 290, C371-8.
Marazziti, D. and Catena Dell''osso, M. (2008). The role of oxytocin in neuropsychiatric disorders. Curr Med Chem 15, 698-704.
McCormick, S. D. and Bradshaw, D. (2006). Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol 147, 3-8.
Michaud, J. L., DeRossi, C., May, N. R., Holdener, B. C. and Fan, C. M. (2000). ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev 90, 253-61.
Michaud, J. L., Rosenquist, T., May, N. R. and Fan, C. M. (1998). Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 12, 3264-75.
Nakada, T., Hoshijima, K., Esaki, M., Nagayoshi, S., Kawakami, K. and Hirose, S. (2007). Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol 293, R1743-53.
Nakai, S., Kawano, H., Yudate, T., Nishi, M., Kuno, J., Nagata, A., Jishage, K., Hamada, H., Fujii, H., Kawamura, K. et al. (1995). The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev 9, 3109-21.
Pan, T. C., Liao, B. K., Huang, C. J., Lin, L. Y. and Hwang, P. P. (2005). Epithelial Ca2+ channel expression and Ca2+ uptake in developing zebrafish. Am J Physiol 289, R1202-11.
Pierson, P. M., Guibbolini, M. E., Mayer-Gostan, N. and Lahlou, B. (1995). ELISA measurements of vasotocin and isotocin in plasma and pituitary of the rainbow trout: effect of salinity. Peptides 16, 859-65.
Sakamoto, T. and McCormick, S. D. (2006). Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 147, 24-30.
Schonemann, M. D., Ryan, A. K., McEvilly, R. J., O''Connell, S. M., Arias, C. A., Kalla, K. A., Li, P., Sawchenko, P. E. and Rosenfeld, M. G. (1995). Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev 9, 3122-35.
Shih, T. H., Horng, J. L., Hwang, P. P. and Lin, L. Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol 295, C1625-32.
Sjoquist, M., Huang, W., Jacobsson, E., Skott, O., Stricker, E. M. and Sved, A. F. (1999). Sodium excretion and renin secretion after continuous versus pulsatile infusion of oxytocin in rats. Endocrinology 140, 2814-8.
Unger, J. L. and Glasgow, E. (2003). Expression of isotocin-neurophysin mRNA in developing zebrafish. Gene Expr Patterns 3, 105-8.
Verbalis, J. G., Mangione, M. P. and Stricker, E. M. (1991). Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 128, 1317-22.
Wang, W. and Lufkin, T. (2000). The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev Biol 227, 432-49.
Yan, J. J., Chou, M. Y., Kaneko, T. and Hwang, P. P. (2007). Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol 293, C1814-23.
Zhong, M., Yang, M. and Sanborn, B. M. (2003). Extracellular signal-regulated kinase 1/2 activation by myometrial oxytocin receptor involves Galpha(q)Gbetagamma and epidermal growth factor receptor tyrosine kinase activation. Endocrinology 144, 2947-56.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top