跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 08:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許智傑
研究生(外文):Chih-Chieh Hsu
論文名稱:以自然標記研究台灣沿岸水域烏魚的族群結構及洄游環境史
論文名稱(外文):Use of natural markers to study population structure and migratory environmental history of Mugil cephalus L. in the coastal waters of Taiwan
指導教授:曾萬年曾萬年引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:烏魚微衛星DNA族群遺傳結構耳石微化學洄游環境
外文關鍵詞:Mugil cephalusmicrosatellitespopulation genetic structureotolith microchemistrymigratory environment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究欲瞭解台灣沿岸水域烏魚的族群結構及其洄游環境史。研究材料是2005 ~ 2008年採自下列地點:1)每年冬至出現在台灣東北與西南海域的生殖洄游群;2)淡水河中游;和3)高屏溪河口域。此外,為了證明年輪,也從雲林縣的兩個養殖場內採集已知年齡的烏魚。所有烏魚樣本皆進行外部形態測量,並取出耳石、鱗片、肌肉組織和生殖腺組織,分別進行年齡判定、成長率估計、外部形態之多變値解析,並利用微衛星DNA和雷射偶合電漿質譜儀瞭解其族群結構及洄游環境史。
結果顯示:1)鱗片與耳石上的年輪與實際年齡一致。2)台灣東北部海域的烏魚在12月中旬到達性成熟,而且體長、生殖腺指數、卵徑以及生殖細胞發育狀態皆與台灣西南海域的產卵洄游群類似,此結果顯示東北海域也是烏魚的產卵場。3)微衛星DNA的分析結果顯示台灣地區的烏魚可以分為三個族群(P1, P2, P3)。東北與西南海域的三個族群比例分別為94% (P1),1% (P2)以及5% (P3);高屏溪三個族群的比例分別為8% (P1),30% (P2)和62% (P3),其中P1族群就是以往所認知的冬至洄游群。成長率和外部形態在這三個族群之間則皆無顯著差異。4)耳石邊緣的Sr/Ca比值在海水、河口和淡水之間呈現顯著差異(ANOVA, p < 0.05)。當烏魚棲息於淡水環境時,其耳石平均Sr/Ca比值小於3.2 × 10-3;當鹽度大於33 PSU,耳石平均Sr/Ca比值則大於6.0 × 10-3。5)依據耳石核心之Sr/Ca比值可將烏魚分成三種類型。Type I 之Sr/Ca比值高於6 × 10-3,表示初期發育階段是在海水環境;Type II之Sr/Ca比值介於3.2 × 10-3 ~ 6 × 10-3之間,表示初期發育階段是在半淡鹹水環境;Type III的Sr/Ca比值低於3.2 × 10-3,表示這類烏魚的初期發育階段可能是在淡水環境。6)耳石鍶鈣比的時序列變化則顯示烏魚洄游環境史的多樣性,但是三個族群的洄游環境史並沒有明顯的區隔。綜合以上結果,發現除了每年冬季洄游至台灣西南與東北海域產卵的溫帶洄游型的烏魚群(P1)外,還有亞熱帶洄游型(P2)和亞熱帶混合型(P3)兩個族群。這三個烏魚群的族群遺傳結構雖然不一樣,但其外部形態及生活史特徵卻沒有顯著差異,表示不同烏魚族群是共存在同一水域中。
To understand the population structure and migratory environmental history of flathead mullet Mugil cephalus in the costal waters of Taiwan, the allele frequency of 9 microsatellites loci of the mullet was analyzed and the elemental composition in otolith of the mullet was analyzed by LA-ICP-MS. The specimens of the mullet were collected from the spawning grounds in Northeastern (NE) and Southwestern (SW) waters of Taiwan, Tanshui River and Kaoping River estuary in 2005 ~ 2008, respectively. In addition, to validate the annulus in the scale and otolith of the mullet, the known-age cultured mullet were collected from two fish farms in Yunlin prefecture, western Taiwan. After collection, the morphometric characteristics including length and weight of the mullet were measured, and the scale, otolith, muscle tissue and gonad tissue were collected.
The results revealed that: 1) Annuli in both scale and otolith of the cultured mullet were consistent with their true ages. 2) The mullet in the NE waters matured and spawned in mid-December as indicated by gonadosomatic index, fecundity, oocyte diameter frequency, and the maturation stages of gonad cell, which were all similar to those of the mullet that migrated to the SW waters at the same time. This indicated that the NE waters was also one of the spawning grounds of M. cephalus in the coastal waters of Taiwan. 3) The microsatellites indicated that there are three different populations (P1, P2, and P3) co-existed in the coastal waters of Taiwan. The contributions of the three populations were different among areas, in both spawning grounds, they were P1: 94%, P2: 1% and P3: 5%. The population genetic structure of the mullet in Kaoping River was different from those in NE and SW waters, which were mainly composed of P2 (30%) and P3 (62%). The growth rate and morphological variables were not significantly different among three populations. This suggested that growth rate and morphological variables can not be used as an indicator to distinguish the population units of M. cephalus in the coastal waters of Taiwan. 4) The Sr/Ca ratios in the otolith edges were significantly different for the mullet collected among sea water, estuary and freshwater (ANOVA, p < 0.05). The mean Sr/Ca ratios in otolith are lower than 3.2 × 10-3 when mullet lived in freshwater environment, larger than 6.0 × 10-3 when mullet lived in sea water environment. 5) Based on the Sr/Ca ratio in the otolith core region, the mullet was divided into three types: Type I, the mean Sr/Ca ratio was greater than 6.0 × 10-3, indicating that the mullet at early stage lived in sea water. Type II, the Sr/Ca ratio between 3.2 × 10-3 ~ 6.0 × 10-3, indicating that mullet at early stage lived in brackish water. Type III, the Sr/Ca ratio was less than 3.2 × 10-3, indicating that the mullet at early stage lived in freshwater environment. 6) The temporal change of Sr/Ca ratios in the otolith indicated that the migratory environmental histories of the mullet are similar among the 3 populations.
In conclusion, the population genetic structures analyses indicated that M. cephalus in the coastal waters of Taiwan were not only the well-known migratory population which spawned in NE and SW waters of Taiwan, but also there were two more populations to be found in the Kaoping River estuary. Although these populations seemed to have different genetic structures but they can not be distinguished by morphology and growth rate. The difference in population genetic structure and non-differences in morphologic characteristics and life history strategies might be resulting from coexistence because of inhabitating the same or overlapping geographic areas.
目錄
口試委員會審定書
謝辭------------------------------------------------------------------------------------------ i

中文摘要------------------------------------------------------------------------------------ ii

英文摘要------------------------------------------------------------------------------------ iv

第一章 緒論------------------------------------------------------------------------------ 1
第一節 族群的特徵------------------------------------------------------------------- 1
第二節 烏魚生活史及族群問題---------------------------------------------------- 1
第三節 自然標記在族群判別上的應用------------------------------------------- 4
第四節 研究目的---------------------------------------------------------------------- 11
(一) 建立鱗片及耳石年齡判讀之基準-------------------------------------- 12
(二) 證明東北海域也是烏魚的產卵場-------------------------------------- 12
(三) 台灣沿岸水域的烏魚族群遺傳結構----------------------------------- 12
(四) 不同族群的外部形態或成長率是否有所差異----------------------- 12
(五) 耳石微化學與烏魚洄游環境關係之驗證及應用-------------------- 12
第二章 研究方法與步驟--------------------------------------------------------------- 13
第一節 採樣設計及樣本處理------------------------------------------------------- 13
第二節 族群遺傳結構分析---------------------------------------------------------- 14
第三節 成熟度與孕卵數分析------------------------------------------------------- 15
第四節 年齡驗證與成長率分析---------------------------------------------------- 16
第五節 外部形態分析---------------------------------------------------------------- 18
第六節 耳石微量元素分析---------------------------------------------------------- 19
第三章 結果------------------------------------------------------------------------------ 22
第一節 年齡的驗證------------------------------------------------------------------- 22
(一) 鱗片上的年輪特徵------------------------------------------------------- 22
(二) 耳石的年輪特徵---------------------------------------------------------- 22
(三) 耳石切片的年輪之微細構造------------------------------------------- 23
第二節 台灣沿岸水域有兩個烏魚產卵場---------------------------------------- 24
(一) 東北及西南海域的烏魚體長比較------------------------------------- 24
(二) 生殖腺指數與卵徑的時序列變化------------------------------------- 24
(三) 烏魚生殖細胞的發育狀態---------------------------------------------- 24
第三節 台灣沿岸水域的烏魚利用遺傳學方法可以分成三個族群---------- 26
第四節 外部形態與成長率皆無族群間之差異---------------------------------- 28
(一) 外部形態測定值在三個族群之間沒有差異------------------------ 28
(二) 三個族群之間的成長率沒有顯著差異------------------------------- 28
第五節 耳石微量元素可以將台灣沿岸水域烏魚分成三種類型------------- 30
(一) 耳石邊緣微量元素比值與鹽度之關係------------------------------- 30
(二) 利用耳石元素組成判別烏魚來自三種不同環境的成功率------- 31
(三) 耳石核心元素組成與初期生活史的環境---------------------------- 31
(四) 耳石元素的時序列變化與洄游環境---------------------------------- 32
1.西南與東北海域族群-------------------------------------------------- 32
2.高屏溪河口域族群----------------------------------------------------- 33
3.淡水河中游水域族群-------------------------------------------------- 34
4.季節移動模式----------------------------------------------------------- 36
第四章 討論------------------------------------------------------------------------------ 37
第一節 年輪特徵及形成原因------------------------------------------------------- 37
第二節 台灣東北海域為烏魚產卵場的證明------------------------------------- 38
第三節 烏魚的族群遺傳結構------------------------------------------------------- 39
第四節 外部形態與成長率與族群遺傳差異的不一致現象------------------- 40
第五節 耳耳石Sr/Ca與Ba/Ca比值做為環境指標之探討--------------------- 42
第六節 烏魚族群遺傳與洄游環境資訊的整合---------------------------------- 44
第五章 結論------------------------------------------------------------------------------ 48
第六章 參考文獻------------------------------------------------------------------------ 49
第一節 外文文獻---------------------------------------------------------------------- 49
第二節 中文文獻--------------------------------------------------------------------- 71
表 72
圖 81
附件 103
Abaunza P, Murta AG, Campbell N, Cimmaruta R, Comesaña AS, Dahle G, García Santamaría MT, Gordo LS, Iversen SA, MacKenzie K, Magoulasi A, Mattiucci S, Molloy J, Nascetti G, Pinto AL, Quinta R, Ramosb P, Sanjuan A, Santos AT, Stransky C, ZimmermannmBagenal C. 2008. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fish. Res. 89:196-209
Al-Husaini M, Al-Ayoub S, Dashti J. 2001. Age validation of nagroor, Pomadasys kaakan (Cuvier, 1830) (Family: Haemulidae) in Kuwaiti waters. Fish. Res. 53:71-81
Arai T, Hirata T. 2006. Differences in the trace element deposition in otoliths between marine- and freshwater-resident Japanese eels, Anguilla japonica, as determined by laser ablation ICPMS. Environ. Biol. Fishes. 75:173-182
Arai T, Hirata T, Takagi Y. 2007. Application of laser ablation ICPMS to trace the environmental history of chum salmon Oncorhynchus keta. Mar. Env. Res. 63:55-66
Arendt JD, Wilsn DS. 2000. Population differences in the onset of cranial ossification in pumpkinseed (Lepomis gibbosus), a potential cost of rapid growth. Can. J. Fish. Aqua. Sci. 57:351-356
Ashford JR, Arkhipkin AI, Jones CM. 2006. Can the chemistry of otolith nuclei determine population structure of Patagonian toothfish Dissostichus eleginoides? J. Fish. Biol. 63:708-721
Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW. Lam JWH. 2000. Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 64:1705-1714
Beacham TD. 1990. A genetic analysis of meristic and morphometric variation in chum salmon (Oncorhynchus keta) at three different temperatures. Can. J. Zool. 68:225-229
Beacham TD, Candy JR, Supernault KJ, Ming TB, Deagle SA, Tuck D, Kaukinen KH, Irvine JR, Miller KM, Withler RE. 2001. Evaluation and application of microsatellite and major histocompatibility complex variation for stock identification of coho salmon in British Columbia. Trans. Am. Fish. Soc. 130:1116-1149
Beckman DW, Wilson CA. 1995. Seasonal timing of opaque zone formation in fish otoliths. In: Recent developments in fish otolith research. Columbia, OH: Belle W. Baruch. pp.27-44
Begg GA, Waldman JR. 1999. An holistic approach to fish stock identification. Fish. Res. 43:35-44
Berg A, Grimaldi E. 1967. A critical interpretation of the scale structure used for the determination of annuli in fish growth studies. Memorie dell''Istituto Italiano di Idrobiologia 21:225-239
Bilton HT, Robbins GL. 1971. Effects of feeding level on circulus formation on scales of young sockyed salmon (Oncorhynchus nerka). J. Fish. Res. Board. Can. 28:861-868
Blaber SJM. 1987. Factors affecting recruitment and survival of mugilids in estuaries and coastal waters of southeastern Africa. Am. Fish. Soc. Symp. 1:507-518
Booth AJ, Merron GS, Buxton CD. 1995. The growth of Oreochromis andersonii (Pisces: Cichlidae) from the Okavango Delta, Botswana, and a comparison of the scale and otolith methods of ageing. Environ. Biol. Fishes. 43:171-178
Bradbury IR, Campana SE, Bentzen P. 2008. Otolith elemental composition and adult tagging reveal spawning site fidelity and estuarine dependency in rainbow smelt. Mar. Ecol. Prog. Ser. 368:255-268
Brazner JC, Campana SE, Tanner DK. 2004. Habitat fingerprints for lake Superior coastal wetlands derived from elemental analysis of yellow perch otolith. Trans. Am. Fish. Soc. 133:692-704
Brönmark C, Miner JG. 1992. Predator-induced phenotypical change in body morphology in crucian carp. Science 258:1348-1350
Brulhet J. 1975. Observations on the biology of Mugil cephalus ashenteensis and the possibility of its aquaculture on the Mauritanian coast. Aquaculture. 5:271-281
Burton RS. 1996. Molecular tools in marine ecology. J Exp. Mar. Biol. Ecol. 200:85-101
Cadrin SX, Friedland KD. 1999. The utility of omage processing techniques for morphometric analysis and stock identification. Fish. Res. 43:129-139
Cadrin SX, Friedland KD, Waldman JR. 2005. Natural marks – environmental signals and genetic analyses. In: Stock identification methods: applications in fishery science. Elsevier Academic press. pp.211-389
Campana SE. 1999. Chemistry and composition of fish otolith: pathways, mechanisms and application. Mar. Ecol. Prog. Ser. 188:263-297
Campana SE, Chouinard GA, Hanson JM, Frechet A, Brattey J. 2000. Otolith elemental fingerprints as biological tracers of fish stocks. Fish. Res. 46:343-357
Carl LM, Hearley MC. 1984. Differences in enzyme frequency and body morphology among three juvenile life history types of chinook salmon (Oncorhynchus tshawytscha) in the Nanaimo River, British Columbia. Can. J. Fish. Aqua. Sci. 41:1070-1077
Casselman JM, Collins JJ, Crossmgleran EJ, Ihssen PE, Spangler GR. 1981. Lake whitefish (Coregonus clupeaformis) in the Great Lakes region. Can. J. Fish. Aquat. Sci. 38:1772-1789
Casselman JM. 1982. Chemical analyses of the optically different zones in eel otoliths. In: Proceedings of the 1980 North American Eel conference, Ontario Fish. Tech. Rep. No. 4. pp.74-82
Casselman JM, Collins JJ, Crossman EJ, Ihssen PE, Spangler GR. 1981. Lake whitefish (Coregonus clupeaformis) stocks of the Ontario waters of Lake Huron. Can. J. Fish. Aqua. Sci. 38:1772-1789
Cech JJ, Wohlschlag DE. 1975. Summer growth depression in the striped mullet, Mugil cephalus. Contrib. Mar. Sci. 19:92-100
Chan LH, Drummond D, Edmund JM, Grant B. 1977. On the barium data from the Atlantic GEOSECS expedition. Deep. Sea. Rese. 24:613-649
Chang CW, Huang CS, Tzeng WN. 1999. Redescription of redlip mullet Chelon haematocheilus (Pisces: Mugilidae) with a key to mugilid fishes in Taiwan. Acta Zool. Taiwan 10:37-43
Chang CW, Tzeng WN. 2000. Species composition and seasonal occurrence of mullets (Pisces, Mugilidae) in the Tanshui estuary northwest Taiwan. J. Fish. Soc. Taiwan. 27:253-262
Chang CW, Tzeng WN, Lee YC. 2000. Recruitment and hatching dates of grey mullets (Mugil cephalus L.) juveniles in the Tanshui estuary of northwest Taiwan. Zool. Stud. 39:99-106
Chang CW. 2003. Use of otolith microstructure and microchemistry to study life history and migratory environment of grey mullet Mugil cephalus in the coastal waters of Taiwan. PhD dissertation, National Taiwan University, Taipei, Taiwan
Chang CW, Iizuka Y, Tzeng WN. 2004. Migratory environmental history of the grey mullet Mugil cephalus as revealed by otolith Sr:Ca ratios. Mar. Ecol. Prog. Ser. 269:277-288
Chang CW, Tzeng WN. 2006. Spatial and temporal variations of grey mullet resource in the coast of Taiwan: species identification, production and aquaculture. Fisheries Extension NTU 18:25-42
Chen CTA. 2003. Rare northward flow in the Taiwan Strait in winter: a note. Cont. Shelf Res. 23:387-391
Chen WY, Su WC. 1986. Reproductive biology of the grey mullet, Mugil cephalus L. of Taiwan. In: Study on the resource of grey mullet in Taiwan, 1983-1985. Kaohsiung Branch TFRI, Kaohsiung. pp.73-80
Chen WY, Su WC, Shao KT, Lin CP. 1989, Morphometric studies of the grey mullet (Mugil cephalus) from the waters around Taiwan. J. Fish. Soc. Taiwan. 16:153-163
Chen Y, Jackson DA, Harvey HH. 1992. A comparison of von Bertalanffy and polynomial functions in modelling fish growth data. Can. J. Fih. Aquat. Sci. 49:1228-1235
Coffey M, Dehairs F, Collette O, Luther G, Church T, Jickells T. 1997. The behaviour of dissolved barium in estuaries. Estuar., Coast. Shelf. Sci. 45:113-121
Corti M, Crosetti D. 1996. Geographic variation in the grey mullet: a geometric morphometric analysis using partial warp scores. J. Fish. Biol. 48:255-269
Currens KP, Sharpe CS, Hjort R, Schreck CB, Li HW. 1989. Effects of different feeding regimes on the morphometrics of chnook salmon (Oncorhynchus tshawytscha) and rainbow trout (O. mykiss). Copeia. 689-695
Das A, Krishnaswami S. 2006. Barium in Deccan basalt rivers: its abundance, relative mobility and flux. Aquatic geochemistry. 12:221-238
DePontual H, Geffen AJ. 2002. Otolith microchemistry. In: Manual of Fish Sclerochronology. Ifremer-IRD coedition. Brest. France. pp.245-307
DeSalle R, Schierwater B. Molecular approaches to ecology and evolution. 1998. Boston : Birkhauser. pp.61-83
DiBacco C, Levin LA. 2000. Development and application of elemental fingerprinting to track the dispersal of marine invertebrate larvae. Limnol. Oceanogr. 45:871-880
DeVries DA, Grimes CB. 1997. Spatial and temporal variation in age and growth of king mackerel, Scomberomorus cavalla, 1977-1992. Fish. Bull. 95:694-708
Dorval E, Jones CM, Hannigan R, van Montfrans J. 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64:411-424
Edmonds JS, Moran MJ, Caputi N, Morita M. 1989. Trace elemental analysis of fish sagitta as an aid in stock identification : pink snapper (Chrysophrys auratus) in Western Australian waters. Can. J. Fish. Aqua. Sci. 46:50-54
Elliot NG, Haskard K, Koslow JA. 1995. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. J. Fish. Biol. 46:202-220
Elsdon TS, Gillanders BM. 2002. Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 59:1796-1808
Elsdon TS. Gillanders BM. 2003. Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar. Ecol. Prog. Ser. 260:263-272
Elsdon TS, Gillanders BM. 2004. Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313:269-284
Elsdon TS, Gillanders BM. 2005. Alternative life-history patterns of estuarine fish: barium in otolith elucidates freshwater residency. Can. J. Fish. Aquat. Sci. 62:1143-1152
Endler JA. 1995. Multiple-trait coevolution and environmental gradients in guppies. Trends. Ecol. Evol. 10:22-29
Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online. 1:47-50
Fan KL. 1979. On upwelling off the Peng-Hu islands. Acta oceanographica Taiwanica science reports of the National Taiwan University 9:50-57
Geffen AJ, Pearce NJG, Perkins WT. 1998. Metal concentrations in fish otoliths in relation to body composition after laboratory exposure to mercury and lead. Mar. Ecol. Prog. Ser. 165:235-245
Gibbs RH. 1985. The stomioid fish genus Eustomias and the oceanic species concept. In: Pelagic Biogeography. UNESCO Tech. Pap. Mar. Sci. 49: 98-103
Gillanders BM, Kingsford MJ. 1996. Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Mar. Ecol. Prog. Ser. 141:13-20
Gillanders BM, Kingsford MJ. 2000. Element fingerprint of otoliths may distinguish estuarine “nursery” habitats. Mar. Ecol. Prog. Ser. 201:273-286
Gillanders BM. 2001. Trace metals in four structures of fish and their use for estimates of stock structure. Fish. Bull. 99:410-419
Gillanders BM. 2002. Temporal and spatial variability in elemental composition of otoliths: implication for determining stock identity and connectivity of populations. Can. J. Fish. Aquat. Sci. 59:669-679
Gillanders BM, Kingsford MJ. 2003. Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Estuar. Coast. Shelf Sci. 57:1049-1064
Goldstein DB, Pollock DD. 1997. Launching microsatallites: a review of mutation processes and methods of phylogenetic inference. J. Hered. 88:335-342
Gottelli D, Sillerozubiri C, Applebau GD, Roy MS, Girman DJ, Garciamoreno J, Ostrander EA, Wayne RK. 1994. Molecular genetics of the most endangered cand: the Ehiopian wolf Canis simess. Molecular Ecology 3:301-312
Gould SJ. 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41:587-640
Grant CJ, Spain AV. 1975. Reproduction, growth and size allometry of Mugil cephalus L. (Pisces: Mugilidae) from North Queensland inshore waters. Aust. J. Zool. 23:181-201
Grant WS, Waples RS. 2000. Spatial and temporal scales of genetic variability in marine an anadromous species: Implicatios for fisheries oceangraphy. In: Fisheries Oceangraphy. Blackwell Science, Oxford, UK. pp.61-93
Griffiths MH. 1996. Age and growth of South African silver kob Argyrosomus inodorus (Sciaenidae), with evidence for separate stocks. South African J. Mar. Sci. 17:37-48
Griffiths MH. 1997. The life history and stock separation of silver kob, Argyrosomus inodorus, in South African waters. Fish. Res. 95:47-67
Hankison SJ, Childress MJ, Schmitter-Soto JJ, Ptacek MB. 2006. Morphological divergence ithin and between the Mexican sailfin mollies, Poecilia velifera and Poecilia petenensis. J. Fish. Biol. 68:1610-1630
Hanson PJ, Zdanowicz VS. 1999. Elemental composition of fish otoliths and contaminant levels along an estuarine pollution gradient. J. Fish. Biol. 54:656-668
Hatfield T. 1997. Genetic divergence in adaptive characters between sympatric species of sticklebacks. Am. Nat. 149:1009-1029
Hauser L, Adcock GJ. 2002. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc. Natl. Acad. Sci. U. S. A. 99:11742-11747
Hearne CM, Ghosh S, Todd JA. 1992. Microsatellites for linkage analysis of genetic-traits. Trends. Genet. 8:288-294
Hedgecock D, Hutchinson ES, Li G, Sly FL, Nelson K. 1989. Genetic and morphometric variation in the Pacific sardine, Sardinops sagax caerulea: comparisons and contrast with historical data and with variability in the northern anchovy, Engraulis morax. Fish. Bull. 87:653-671
Hsu CC, Han YS, Tzeng WN. 2007. Evidence of flathead mullet Mugil cephalus L. spawning in waters northeast of Taiwan. Zool. Stud. 46:717-725
Hsu CC, Chang CW, Iizuka Y, Tzeng WN. 2009. A growth check deposited at estuarine arrival in toliths of juvenile flathead mullet (Mugil cephalus L.). Zool. Stud. 48:315-324
Huang CS, Su WC. 1986. Analysis on the fishing condition of grey mullet in Taiwan, 1984-1985. In: Study on the resource of grey mullet in Taiwan, 1983-1985. Kaohsiung Branch TFRI, Kaohsiung. pp.35-48
Huang CS, Su WC. 1989. Studies on the fluctuations of fishing conditions for grey mullet (Mugil cephalus Linnaeus) from the western coast of Taiwan. J. Fish. Soc. Taiwan. 16:47-83
Huang CS, Weng CF, Lee SC. 2001. Distinguishing two types of gray mellet, Mugil cephalus L. (Mugiliformes: Mugilidae), by using glucose–6- phosphate isomerase (GPI) allozymes with special reference to enzyme activities. J Comp. Physiol-B. Biochem. Syst. Environ. Physiol. 171:387-394
Ibáñez-Aguirre AL, Gallardo-Cabello M. 1996. Age determination of the grey mullet Mugil cephalus L. and the white mullet Mugil curema V. (pisces: mugilidae) in tamiahua lagoon, Veracruz. Ciencias Marinas 22:329-345
Imre I, McLaughlin RL, Noakes DLG. 2002. Phenotypic plasticity in brook charr: changes in caudal fin induced by water flow. J. Fish. Biol. 61:1171-1181
Jarne P, Lagoda PJL. 1996. Microsatallites, from molecules to populations and back. Trends. Ecol. Evolut. 11:424-429
Johnson DW, McClendon EL. 1970. Differential distribution of striped mullet, Mugil cephalus Linnaeus. Calif. Fish Game 56:138-&
Kinsey ST, Orsoy T, Bert TM, Mahmoudi B. 1994. Population structure of the Spanish sardine Sardinella aurita: natural morphological variation in a genetically homogeneous population. Mar. Biol. 118:309-317
Kuo CL. 1986. Oceanographic conditions in Taiwan Strait during the grey mullet season of 1984 and 1985. In: Study on the resource of grey mullet in Taiwan, 1983-1985. Kaohsiung Branch TFRI, Kaohsiung. pp.27-34
Landret JP. 1975. Contŕibution à ľétude de Mugil cephalus et comparaison ayec ďautres espèces de Mugilidae. Thesis, Paris
Lanyon LE, Rubin CT. 1985. Functional adaptation in skeletal structures. In: Functional vertebrate morphology. Cambridge, MA. pp.1-25
Lea DW, Shen GT, Boyle EA. 1989. Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340:373-376
Lee SC. 1992. Fish fauna and abundance of some dominant species in the estuary of Tanshui, northwestern Taiwan. J. Fish. Soc. Taiwan. 19:263-271
Lenanton R, Hodgkin E. 1985. Life history strategies in some temperate Australian estuaries. In: Fish community ecology in estuaries and coastal lagoons: towards an ecosystem integration. Editorial Universitaria, UNAM-PUAL-ICML, Mexico. pp.267-284
Levinson G, Gutman GA. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molec. Biol. Evol. 4:203-221
Li YH, Chan LH. 1979. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary. Earth. Planet. Sci. Lett. 43:343-350
Liao IC. 1975. The experiments on the induced breeding of the grey mullet in Taiwan from 1963-1973. Aquaculture 6:31-58.
Liao IC, Chao NH. 1991. Grey mullet culture in Taiwan. In: CRC Handbook of Mariculture, Vol II. CRC press. Boca Raton, Florida, USA. pp.117-132.
Lin SH, Chang CW, Iizuka Y, Tzeng WN. 2007. Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica. J. Exp. Mar. Biol. Ecol. 341:254-263
Lin YJ, Tzeng WN. 2009. Validation of annulus in otolith and estimation of growth rate for Japanese eel Anguilla japonica in tropical southern Taiwan. Environ. Biol. Fish. 84:79-87
Liu CH. 1986. Survey of the spawning grounds of grey mullet. In: Study on the resource of grey mullet in Taiwan, 1983-1985. Kaohsiung Branch TFRI, Kaohsiung. pp.63-72
Liu HC, WN Tzeng. 1972. Age and growth of white croaker, Argyrosomus argentatus (Houttuyn), in the East China Sea and the Taiwan Strait. J. Fish. Soc. Taiwan. 1: 20-30
Liu CH, Shen SC. 1991. A revision of the mugilid fishes from Taiwan. Bull. Inst. Zool. Acad. Sin. 30:273-288
Liu HC. 2000. Variation of the mtDNA control region and population genetics of the Grey mullet (Mugil cephalus) in Taiwan. Master thesis, National Taiwan University, Taipei, Taiwan
MacGregor JS. 1922. Observation on the egg yield of Klamath river king salmon. Calif. Fish. Game. 8:160-164
Mackenzie K, Abaunza P. 1998. Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fish. Res. 38:45-56
Mackenzie K. 2002. Parasites as biological tags in population studies of marine organisms: an update. Parasitology. 124:153-163
Martin GB, Thorrold SR. 2005. Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Mar. Ecol. Prog. Ser. 293:223-232
McDonough CJ, Roumillat WA, Wenner CA. 2003. Fecundity and spawning season of striped mullet (Mugil cephalus L.) in South Carolina estuaries. Fish. Bull. 101:822-834
McDonough CJ, WA Roumillat, CA Wenner. 2005. Sexual differentiation and gonad development in striped mullet (Mugil cephalus L.) from South Carolina estuaries. Fish. Bull. 103:601-619
Meng HJ, Stocker 1984. An evaluation of morphometric and meristics for stock identification of Pacific herring (Clupea harengus pallasi). Can. J. Fish. Aquat. Sci. 41:414-422
Metcalfe NB, Monaghan P. 2001. Compensation for a bad start: grow now, pay later? Trends. Ecol. Evol. 16:254-260
Miller JA, Banks MA, Gomez-Uchida D, Shanks AL. 2005. A comparison of population structure in black rockfish (Sebastes melanops) as determined with otolith microchemistry and microsatellite DNA. Can. J. Fish. Aquat. Sci. 62:2189-2198
Milton DA, Chenery SR. 2001. Can otolith chemistry detect the population structure of the shad hilsa Tenualosa ilisha? Comparison with the results of genetic and morphological studies. Mar. Ecol. Prog. Ser. 222:239-251
Morris JA, Rulifson RA, Toburen LH. 2003. Life history strategies of striped bass, Morone saxatilis, populations inferred from otolith microchemistry. Fish. Res. 62:53-63
Moser M, Hsieh J. 1992. Biological tags for stock separation in Pacific herring Clupea harengus pallasi in California. J. Parasitol. 78:54-60
Mosquera J, Gomez GM, Perez VV. 2000. Using parasites as biological tags of fish populations: a dynamical model. Bull. Math. Biol. 62:87-99.
Murta AG. 2000. Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and North Africa Atlantic: implications for stock identification. J. Mar. Sci. 57:1240-1248
Murta GA, Pinto AL, Abaunza P. 2008. Stock identification of horse mackerel (Trachurus trachurus) through the analysis of body shape. Fish. Res. 89:152-158.
Nash CE, Shehadeh ZH. 1980. Review of breeding and propagation techniques for grey mullet, Mugil cephalus L. ICLARM Stud. Rev. 3:1-40
Nelson JS. 1994. Fishes of the world. John Wiley and Sons Inc., Toronto, pp.254-255
Øresland V, André C. 2008. Larval group differentiation in Atlantic cod (Gadus morhua) inside and outside the Gullmar Fjord. Fish. Res. 90:9-16
Pannella G. 1971. Fish otoliths: daily growth layers and periodical patterns. Science 173:1124-1127
Patterson HM, Thorrold SR, Shenker JM. 1999. Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution-based ICP-MS. Coral. Reefs. 18:171-178
Patterson HM, McBride RS, Julien N. 2004. Population structure of red drum (Sciaenops ocellatus) as determined by Otolith chemistry. Mar. Biol. 144:855-862
Pawson MG, Jennings S. 1996. A critique of methods for stock identification in marine capture fisheries. Fish. Res. 25:203-217
Pepin P, Carr SM. 1992. Morphometrical, meristic, and genetic analsis of stock structure in juvenile Atlantic cod (Gadus morhua) from the Newfoundland shelf. Can. J. Fsih. Aquat. Sci. 50:1924-1933
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics. 155:945–959
Queller DC, Strassman JE, Hughes CR. 1993. Microsatallites and kinship. Trends. Ecol. Evolut. 8:285-288
Radtke RL. 1983. Chemical and structural characteristics of statoliths from the short-finned squid Illex illecebrosus. Mar. Biol. 76:47-54
Radtke RL. 1984. Formation and structural composition of larval striped mullet otoliths. Trans. Am. Fish. Soc. 113:192-196
Radtke RL, KinzieⅢ RA, Folsom SD. 1988. Age at recruitment of Hawaiian freshwater gobies. Env. Biol. Fish. 23:205-213
Radtke RL, Townsed DW, Folsom SD, Morrison MA. 1990. Strontium:calcium concentration ratios in otoliths of herring larvae as indications of environmental histories. Env. Biol. Fish. 27:51-61
Radtke RL, Shafer DJ. 1992. Environmental sensitivity of fish Otolith microchemistry. Aust. J. Mar. Freshw. Res. 43:935-951
Ratkowsky DA. 1983. Nonlinear regression modelling. Marcel Dekker, Inc., New York, NY. pp.1-276
Reay PJ. 1972. The seasonal pattern of otolith growth and its application to backcalculation studies in Ammodytes tobianus L. ICES J. Mar. Sci. 34:485-504
Render JR, BA Thompson, RL Allen. 1995. Reproductive development of striped mullet in Louisiana estuarine waters with notes on the applicability of reproductive assessment methods for isochronal species. Trans. Am. Fish. Soc. 124:26-36
Ricker WE. 1958. Handbook of computations for biological statistics of fish populations. Bull. Fish. Res. Board. Cab. Bull. 119:1-300
Robinson BW, Wilson DS. 1996. Genetic variation and phenotypic plasticity in a trophically polymorhic population of pumpkinseed sunfish (Lepomis gibbosus). Evol. Ecol. 10:631-652
Robinson BW, Parsons KJ. 2002. Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Can. J. Fish. Aquat. Sci. 59:1819-1833
Roby D, Lambert JD, Sévigny JM. 1991. Morphometric and electrophoretic approaches to discrimination of capelin (Mallotus vullosus) populations in the estuary and Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 48:2040-2050
Rooker JR, Secor DH, Zdanowicz VS, Itoh T. 2001. Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Mar. Ecol. Prog. Ser. 218:275-282
Rooker JR, Secor DH, Zdanowicz VS, De Metrio G, Relini LO. 2003. Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fish. Oceanogr. 12:75-84
Rossi AR, Capula M, Crosetti D, Campton DE, Sola L. 1998. Genetic divergence and phylogenetic inferences in five species of Mugilidae (Pisces: Perciformes). Mar. Biol. 131:213-218
Sector DH. 1992. Application of otolith microchemistry analysis to investigate anadromy in Chesapeake Bay striped bass US Nation. Mar. Fish. Serv. Fish. Bull. 90:798-806
Shen KN. 2007. The population genetic structure and evolutionary scenario of thre freshwater eels Angilla reinhardtii, A. australis and A. dieffenbachi in the eastern Australia as revealed by microsatellites. PhD dissertation, National Taiwan University, Taipei, Taiwan
Shyu CZ, Lee TJ. 1985. Hydrographic studies on the area of Taiwan Strait in winter using satellite IR imagery and its relationships to the formation of grey mullet fishing ground. J. Fish. Soc. Taiwan. 12:98-122
Silva EA, Stewart DJ. 2006. Age structure, growth and survival rates of the commercial fish Prochilodus nigricans (bocachico) in North-eastern Scuador. Environ. Biol. Fishes. 77:63-77
Sin YW, Yau C, Chu KH. 2009. Morphological and genetic diferentiation of two loliginid squds, Uroteuthis (Photololigo) chinensis and Uroteuthis (Photololigo) edulis (Cephalopoda: Loliginidae), in Asia. J. Exp. Mar. Biol. Ecol. 369:22-30
Smith KA, Deguara K. 2003. Formation and annual periodicity of opaque zones in sagittal otoliths of Mugil cephalus (Pisces: Mugilidae). Mar. Fresh. Res. 54:57-67
Stecher HAI, Krantz DE, Lord CJI, Luther GWI, Bock KW. 1996. Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochimica et Cosmochimica Acta 60:3445-3456
Su SY, Su WC. 1986. Preliminary report on electrophoretic difference of muscle protein of Mugil ceplalus L. In: Study on the resource of grey mullet in Taiwan, 1983-1985. Kaohsiung Branch TFRI, Kaohsiung. pp.49-56
Su WC, Kawasaki T. 1995. Characteristics of the life history of gray mullet from Taiwan waters. Fish. Sci. 61:377-381
Suda Y, Shimizu M, Nose Y. 1987. Morphological differences between cultivated and wild jack mackerel Trachurus japonicus. Bull. Jap. Soc. Sci. Fish. 53:59-61
Summerfelt RC, Hall GE. 1987. The age and growth of fishes. Ames, The Iowa State University. pp.443
Swain DP, Holtby LB. 1989. Differences in morphology and behavior between juvenile coho salmon (Oncorhynchus kisutch) rearing in a lake or in its tributary stream. Can. J. Fish. Aquat. Sci. 46:1406-1414
Swain DP, Foote CJ. 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fish. Res. 43:113-128
Swain DP, Riddell BE, Murray CB. 1991. Morphological differences between hatchery and wild populations of coho salmon (Oncorhynchus kisutch) - environment versus genetic - origin. Can. J. Fish. Aquat. Sci. 48:1783-1791
Tang CY. 2006. Discrimination of Scomber spp. and their stock structure in the hydrographic regions around Taiwan by morphometric and molecular analyses. Master thesis, National Taiwan University, Taipei, Taiwan
Tautz D, Schlötterer C. 1994. Simple Sequences. Curr. Opin. Genet. Develop. 4:832-837
Taylor EB, Foote CJ. 1991. Critical swimming velocities of juvenile sockeye salmon and kokanee, the anadromous and non-anadromous forms of Oncorhynchus nerka (Walbaum). J. Fish. Biol. 38:407-419
Thorrold SR, Jones CM, Campana SE. 1997. Response of otolith microchemistry to environment variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol. Oceanogr. 42:102-111
Thorrold SR, Latkoczy C, Swart P, Jones CM. 2001. Natal homing in a marine fish metapopulation. Science 291:297-299
Thorrold SR, Jones GP, Hellberg ME, Burton RS, Swearer SE, Neigel JE, Morgan SG, Warner RR. 2002. Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull. Mar. Sci. 70:291-308
Thomson JM. 1964. Abibliography of systematic references to the grey mullets (Mugilidae). Div. Fish. Oceanogr. CRIRO. Tech. Pap. 16:1-127
Thomson JM. 1966. The grey mullets. Oceanogr. Mar. Biol. Annu. Rev. 4:301-355
Todd TN, Smith GR, Cable LE. 1981. Environmental and genetic contriburtions to morphological differentiation in ciscoes (Coregoninae) of the Great Lakes. Can. J. Fsih. Aquat. Sci. 38:59-67
Townsend DW, Radtke RL, Morrison MA, Folsom SD. 1989. Recruitment implications of larval herring overwintering distributions in Gulf of Marine, inferred using a new Otolith technique. Mar. Ecol. Pro. Ser. 55:1-13
Tsujita T, Kondo M. 1957. Some contributions to the ecology of the mackerel and theoceanography of the fishing grounds in the East China Sea. Bull. Seikai Reg. Fish. Res. Lab. 93:6-47
Tung IH. 1959. Age determination of the grey mullet (Mugil cephalus Linne). China Fisheries Monthly 180:2-10
Tung IH. 1967. On the egg development and larval stage of the Grey mullet, Mugil cephalus Linnaeus. Rep. Inst. Fish. Bio. Ministry of Economic Affairs and National Taiwan University. 3:187-210
Tung IH. 1981. On the fishery biology of the grey mullet Mugil cephalus in Taiwan. Report of the Institute of Fishery Biology of Ministry of Economic Aflairs and National Taiwan University, 3:38-101
Tzeng TD. 2004. Morphological variation between populations of spotted mackerel (Scomber australasius) off Taiwan. Fish. Res. 68:45-55
Tzeng TD, Yeh SY. 2002. Stock structur of spotted mackerel (Scombe australasicus) in Taiwan inferred from morphometric variation. J. Fish. Soci. Taiwan. 29:117-128
Tzeng WN, Tsai YC. 1994. Changes in otolith microchemistry of the Japanese eel, Anguilla japonica, during its migration from the ocean to the rivers of Taiwan. J. Fish. Biol. 45:671-683
Tzeng WN, Wu HF, Wickström H. 1994. Scanning electron microscopic analysis of annulus microstructure in otolith of European eel, Anguilla Anguilla. J. Fish. Biol. 45:479-492
Tzeng WN. 1996. Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel. J. Exp. Mar. Biol. Ecol. 199:111-122
Tzeng WN, Severin KP, Wickstroem H. 1997. Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Mar. Ecol. Prog. Ser. 149:73-81
Tzeng WN, Shiao JC, Iizuka Y. 2002. Use of otolith Sr : Ca ratios to study the riverine migratory behaviors of Japanese eel Anguilla japonica. Mar. Ecol. Prog. Ser. 245:213-221
Tzeng WN, Severin KP, Wang CH, Wickström H. 2005. Elemental composition of otoliths as a discriminator of life stage and growth habitat ofthe European eel, Anguilla anguilla. Mar. Freshw. Res. 56:1-7
Wainwright PC, Osenberg CW, Mittelbach GG. 1991. Trophic polymorphism in the pumpkinseed sunfish (Lepomis gibbosus Linnaeus): effects of environment on ontogeny. Funct. Ecol. 5:40-55
Wallace JH. 1975. Aspects of the biology of Mugil cephalus in a hypersaline estuarine lake on the east coast of South Africa. Aquaculture 5:111
Weatherley AH, Gill HS. 1987. The biology of fish growth. Academic, New York. pp.1-443
Webb PW. 1982. Locomotor patterns in the evolution of actinopterygian fisher. Am. Zool. 22:329-342
Webb PW. 1984. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24:107-120
Weir BS, Cockerham CC. 1984. Estimating F-statistics for theaalysis of population-structure. Evolution. 38:135-1370
Weir BS, Hill WG. 2002. Estimating F-statistics. Annu. Rev. Genet. 36: 721-750
Wood BM, BAIN MB. 1995. Morphology and microhabitat use in stream fish. Can. J. Fish. Aqua. Sci. 52:1487-1498
Zaki SAH, Jordan WC, Reichard M, Przybylski M, Smith C. 2008. A morphological and genetic analysis of the European bitterling species complex. Biol. J. Linn. Soc. 95:337-347
Zhang DX, Hewitt GM. 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol. Ecol. 12:563-584
Zimmerman CE, Stonecypher RW, Hayes MC. 2003. Migration of precocious male hatchery chinook salmon in the Umatilla River, Oregon. North Am. J. Fish. Manage. 23:1006-1014
Zlokovitz ER, Secor DH, Piccoli PM. 2003. Patterns of migration in Hudson River striped bass as determined by otolith microchemistry. Fish. Res. 63:245-259

第二節 中文文獻
李長縈、郭慶老. 1990. 台灣西部海域烏魚苗之種類、名稱與季節分布。中國水產 第448期 第13-18頁
陳靖玉. 2005. 應用微衛星DNA標幟篩選高生殖腺指數烏魚品系之研究。國立台灣海洋大學水產養殖學系碩士學位論文, 基隆, 第1-32頁
童逸修. 1981. 臺灣產鯔魚之漁業、生態及資源。經濟部-國立台灣大學合辦漁業生物試驗所研究報告 第3卷第4號 第38-102頁
楊鴻嘉. 1983. 台灣洄游鯔魚族群型態學研究。高雄漁訊 第四卷第四期 第24-28頁
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top