跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹勛豪
研究生(外文):Hsun-Hao Jan
論文名稱:電動汽車50kW內藏永磁式同步馬達之設計與開發
論文名稱(外文):Design and Development of 50 kW Interior Permanent Magnet Synchronous Motor for Electric Vehicles
指導教授:陽毅平陽毅平引用關係
指導教授(外文):Yee-Pien Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:190
中文關鍵詞:電動車內藏永磁式馬達設計
外文關鍵詞:Electric vehiclesIPMMotor design
相關次數:
  • 被引用被引用:4
  • 點閱點閱:564
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
本研究目的為設計一個適用於中華汽車電動車Colt Plus EV之50 kW推進馬達。根據電動車輛的動力需求,訂出馬達在不同轉速下所需規格,依此規格挑選適合的馬達形式、繞線方式以及齒極比。本文提出一套完整的內藏永磁式同步馬達設計流程,首先由磁路觀點與馬達設計方程式建立內藏永磁式同步馬達的二維磁路模型,結合多目標函數最佳化設計軟體,藉由調整特定的馬達尺寸參數,同時對馬達輸出力矩、力矩漣波、重量以及效率進行最佳化設計。其次,利用有限元素分析軟體驗證二維磁路模型的最佳化結果,並進一步修正馬達轉子結構以提升內藏永磁式馬達的磁阻力矩輸出。在不同的操作轉速下,採用馬達繞組串並聯切換來滿足低速與高速的動力需求,並使用激磁相位超前角達到弱磁控制的效果,其定功率操作使馬達的轉速範圍再一次得到延伸。本文中亦針對馬達力矩漣波降低進行討論。最後,計算不同行車狀況的馬達發熱量,設計一個水冷散熱系統,使馬達操作溫度到達穩態時可在安全操作範圍內。
In this thesis, an attempt is made to design a 50 kW traction motor which is used for propelling the electric vehicle (Colt Plus EV) of the China Motor Corporation (CMC). On the basis of the dynamic demand for driving the EV, we can decide the traction motor specifications for different rotational speeds. A preliminary design determined the motor type, winding type, and the number of slots and poles. Afterward, the following design process is proposed. First, a 2-D magnetic circuit model for Interior Permanent Magnet (IPM) motors is constructed by using the motor design equations. By combining the model with the Multifunction Optimization System Tool (MOST), the values of the design variables satisfying the optimal value of the output torque, torque ripple, weight, and efficiency are obtained. Second, the design results of the 2-D model are verified by using Finite Element Analysis (FEA) design tools. By changing the rotor geometry, the reluctance torque of the IPM motor can be improved. In order to increase the speed range of the designed motor, an electronic gearshift is employed. Besides, the field-weakening control that is implemented by leading the input current phase further increases the motor speed. Finally, with the aid of the result of thermal analysis and by employing the cooling system design, the motor is operated in the safe temperature region.
中文摘要 I
Abstract II
Contents III
List of Figures VII
List of Tables XIII
List of Symbols XV
Chapter 1 Introduction 1
1.1 Background 1
1.2 Previous Research 3
1.2.1 Electric Vehicle 3
1.2.2 Traction Motor 6
1.3 Statement of Purpose and Design Methodology 9
1.4 Thesis Organization 12
Chapter 2 Preliminary Design 15
2.1 Design Procedure 15
2.2 Design Specifications 17
2.3 Determination of Motor Type 18
2.3.1 AFPM Motor 19
2.3.2 RFPM Motor 20
2.4 Determination of Winding Type 22
2.5 Determination of the Number of Slots and Poles 26
2.6 Comparison of Different Combinations of Slots and Poles 35
2.6.1 Torque Production Analysis 36
2.6.2 Cogging Torque Analysis 38
2.6.3 Summary 40
Chapter 3 Principles of IPM Motor 41
3.1 Description of IPM Motors 41
3.2 Characteristics of IPM Motors 45
3.2.1 Saliency Ratio 45
3.2.2 Saliency of IPM Motors 47
3.2.3 Rotor Variant of IPM Motors 48
3.3 Equations of D-Q Axis Transformation 49
3.3.1 Arbitrary Reference Frame 49
3.3.2 PMSM Torque Equation 52
3.4 Flux Weakening Control 54
3.4.1 Flux Weakening Concept 54
3.4.2 IPM Motor Torque Equation 56
Chapter 4 Magnetic Circuit Model and Optimal Design 59
4.1 Magnetic Circuit 59
4.1.1 Basic Concept of Magnetic Circuit 59
4.1.2 PM Magnetic Circuit Model 63
4.1.3 Flux Linkage and Back-EMF 66
4.2 Geometry Description 67
4.2.1 IPM Motor Geometry 67
4.2.2 Determination of Design Variables 68
4.3 IPM Motor Magnetic Circuit Construction 72
4.3.1 Construction of Magnetic Circuit Model 72
4.3.2 Calculation of Air Gap Permeance 74
4.3.3 Calculation of Magnet and Leakage Permeance 78
4.3.4 Calculation of Air Gap Flux 79
4.3.5 Calculation of Three-Phase Back-EMF 82
4.4 Sensitivity Analysis 84
4.4.1 Objective Function 84
4.4.2 Sensitivity Analysis 89
4.4.3 Sensitivity Indices 105
4.5 Optimal Design 110
4.5.1 Optimal Design Tool 110
4.5.2 Optimal Design Process 113
Chapter 5 Finite Element Verification and Refinement 117
5.1 FEA Tools 117
5.1.1 Model Construction 118
5.1.2 Material Assignment 119
5.1.3 Boundary Definition and Excited Source Setting 121
5.1.4 Solution Setup and Analysis 122
5.1.5 Field and Data Plot 124
5.2 High-Speed Performance Analysis 128
5.2.1 Performance Analysis at 6000 rpm 128
5.2.2 Performance Analysis at 8000 rpm 135
5.2.3 Inductance Analysis 140
5.2.4 Summary 149
5.3 Torque Ripple Reduction 150
5.3.1 Motor with Drilling 150
5.3.2 Rotor with V-Groove 153
5.3.3 Motor with Petaled Shape Rotor 155
5.3.4 Integrated Rotor of Torque Ripple Reduction 157
5.4 Thermal Analysis 159
5.4.1 Heat Estimation 159
5.4.2 Air Cooling 161
5.4.3 Cooling System Design 162
5.4.4 Thermal Analysis 164
5.5 Fabrication 168
Chapter 6 Conclusion, Contribution and Future Work 171
6.1 Conclusion 171
6.2 Contribution 173
6.3 Future Work 174
Reference 177
Appendix A 183
Appendix B 189
Appendix C 190
[1]"Energy Information Administration," in http://www.eia.doe.gov/ New York: Official Energy Statistics from the U.S. Government.
[2]李添財, 電動汽機車. 台北: 全華科技圖書股份有限公司, 2004.
[3]Z. Zhang, F. Profumo, and A. Tenconi, "Improved design for electric vehicle induction motors using an optimisation procedure," Iee Proceedings-Electric Power Applications, vol. 143, pp. 410-416, Nov 1996.
[4]T. Uematsu and R. S. Wallace, "Design of a 100 kW switched reluctance motor for electric vehicle propulsion," Applied Power Electronics Conference and Exposition, 1995. APEC ''95. Conference Proceedings 1995., Tenth Annual vol. 1, pp. 411-415, 5-9 Mar 1995.
[5]C. C. Chan and K. T. Chau, "An advanced permanent magnet motor drive system for battery-powered electric vehicles," Ieee Transactions on Vehicular Technology, vol. 45, pp. 180-188, Feb 1996.
[6]D. Patterson and R. Spee, "The Design and Development of an Axial Flux Permanent-Magnet Brushless Dc Motor for Wheel Drive in a Solar-Powered Vehicle," Ieee Transactions on Industry Applications, vol. 31, pp. 1054-1061, Sep-Oct 1995.
[7]A. H. Wihenayake, J. M. Bailey, and P. J. McCleer, "Design optimization of an axial gap permanent magnet brushless DC motor for electric vehicle applications," Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS ''95., Conference Record of the 1995 IEEE, vol. 1, pp. 685-692, Oct 1995.
[8]S. Kawano, H. Murakami, N. Nishiyama, Y. Ikkai, Y. Honda, and T. Higaki, "High performance design of an interior permanent magnet synchronous reluctance motor for electric vehicles," Power Conversion Conference - Nagaoka 1997., Proceedings of the vol. 1018, p. 2, 3-6 Aug 1997.
[9]J. G. W. West, "Dc, Induction, Reluctance and Pm Motors for Electric Vehicles," Power Engineering Journal, vol. 8, pp. 77-88, Apr 1994.
[10]M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, "Electric motor drive selection issues for HEV propulsion systems: A comparative study," Ieee Transactions on Vehicular Technology, vol. 55, pp. 1756-1764, Nov 2006.
[11]D. C. Hanselman, Brushless Permanent-Magnet Motor Desitn. New York: McGraw-Hill, 2003.
[12]A. Cavagnino, M. Lazzari, F. Profumo, and A. Tenconi, "A comparison between the axial flux and the radial flux structures for PM synchronous motors," Ieee Transactions on Industry Applications, vol. 38, pp. 1517-1524, Nov-Dec 2002.
[13]A. M. El-Refaie and T. M. Jahns, "Comparison of synchronous PM machine types for wide constant-power speed operation," Iet Electric Power Applications, vol. 2, pp. 1015-1022, 2-6 Oct 2005.
[14]K. Shima, K. Ide, M. Takahashi, and K. Oka, "Steady-state magnetic circuit analysis of salient-pole synchronous machines considering cross-magnetization," Ieee Transactions on Energy Conversion, vol. 18, pp. 213-218, Jun 2003.
[15]Y. Kano, T. Kosaka, and N. Matsui, "Simple nonlinear magnetic analysis for permanent-magnet motors," Ieee Transactions on Industry Applications, vol. 41, pp. 1205-1214, Sep-Oct 2005.
[16]J. Cale, S. D. Sudhoff, and L. Q. Tan, "Accurately modeling EI core inductors using a high-fidelity magnetic equivalent circuit approach," Ieee Transactions on Magnetics, vol. 42, pp. 40-46, Jan 2006.
[17]J. K. Kim, S. W. Joo, S. C. Hahn, J. P. Hong, D. H. Kang, and D. H. Koo, "Static characteristics of linear BLDC motor using equivalent magnetic circuit and finite element method," Ieee Transactions on Magnetics, vol. 40, pp. 742-745, Mar 2004.
[18]Y. M. Chen, S. Y. Fan, and W. S. Lu, "Performance analysis of linear permanent-magnet motors with finite-element analysis," Ieee Transactions on Magnetics, vol. 44, pp. 377-385, Mar 2008.
[19]K. A. Rahman, N. R. Patel, T. G. Ward, J. M. Nagashima, F. Caricchi, and F. Crescimbini, "Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system," Ieee Transactions on Industry Applications, vol. 42, pp. 1185-1192, Sep-Oct 2006.
[20]T. S. El-Hasan, P. C. K. Luk, F. S. Bhinder, and M. S. Ebaid, "Modular design of high-speed permanent-magnet axial-flux generators," Ieee Transactions on Magnetics, vol. 36, pp. 3558-3561, Sep 2000.
[21]堀. 洋一, 寺. 達夫, and 正. 良三, 汽車馬達技術: 全華科技圖書股份有限公司, 2005.
[22]S.-O. Kwon, S.-I. Kim, P. Zhang, and J.-P. Hong, "Performance comparison of IPMSM with distributed and concentrated windings," Ieee Transactions on Industry Applications, vol. 4, pp. 1984-1988, Oct 2006.
[23]F. Magnussen and C. Sadarangani, "Winding factors and Joule losses of permanent magnet machines with concentrated windings," Ieee Transactions on Electric Machines and Drives, vol. 1, pp. 333-339, June 2003.
[24]S. P. Cheng and C. C. Hwang, "Design of high-performance spindle motors with single-layer concentrated windings and unequal tooth widths," Ieee Transactions on Magnetics, vol. 43, pp. 802-804, Feb 2007.
[25]W. L. Soong and T. J. E. Miller, "Field-Weakening Performance of Brushless Synchronous Ac Motor-Drives," Iee Proceedings-Electric Power Applications, vol. 141, pp. 331-340, Nov 1994.
[26]Z. Q. Zhu and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," Ieee Transactions on Energy Conversion, vol. 15, pp. 407-412, Dec 2000.
[27]Z. Q. Zhu, S. Ruangsinchaiwanich, N. Schofield, and D. Howe, "Reduction of cogging torque in interior-magnet brushless machines," Ieee Transactions on Magnetics, vol. 39, pp. 3238-3240, Sep 2003.
[28]L. Parsa and L. Hao, "Interior permanent magnet motors with reduced torque pulsation," Ieee Transactions on Industrial Electronics, vol. 55, pp. 602-609, Feb 2008.
[29]E. C. Lovelace, "Optimization of a magnetically saturable interior permanent-magnet synchronous machine drive," in Department of Electrical Engineering and Computer Science: Massachusetts Institute of Technology, 2000, pp. 44-46.
[30]D. A. Staton, T. J. E. Miller, and S. E. Wood, "Maximising the saliency ratio of the synchronous reluctance motor," Ieee Transactions on Electric Power Applications, vol. 140, pp. 249-259, July 1993.
[31]S. Morimoto, "Trend of permanent magnet synchronous machines," Ieej Transactions on Electrical and Electronic Engineering, vol. 2, pp. 101-108, Mar 2007.
[32]V. B. Honsinger, "The Fields and Parameters of Interior Type Ac Permanent-Magnet Machines," Ieee Transactions on Power Apparatus and Systems, vol. 101, pp. 867-876, 1982.
[33]T. M. Jahns, "Flux-Weakening Regime Operation of an Interior Permanent-Magnet Synchronous Motor Drive," Ieee Transactions on Industry Applications, vol. 23, pp. 681-689, Jul-Aug 1987.
[34]Y. Honda, T. Higaki, S. Morimoto, and Y. Takeda, "Rotor design optimisation of a multi-layer interior permanent-magnet synchronous motor," Iee Proceedings-Electric Power Applications, vol. 145, pp. 119-124, Mar 1998.
[35]B. Stumberger, A. Hamler, M. Trlep, and M. Jesenik, "Analysis of interior permanent magnet synchronous motor designed for flux weakening operation," Ieee Transactions on Magnetics, vol. 37, pp. 3644-3647, Sep 2001.
[36]S. I. Kim, J. Y. Leel, Y. K. Kim, J. P. Hong, Y. Hur, and Y. H. Jung, "Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method," Ieee Transactions on Magnetics, vol. 41, pp. 1796-1799, May 2005.
[37]P. C. Krause, Analysis of Electric Machinery. New York: McGraw-Hill Book Company, 1986.
[38]洪士偉, "動力輔助型複合動力系統馬達發電機開發技術," 機械工業雜誌:智慧車輛與動力技術專輯, vol. 272期, p. 105, 2005.
[39]J. S. Hsu, C. W. Ayers, and C. L. Coomer, "Report on TOYOTA prius motor design and manufacturing assessment," Oak Ridge National Laboratory, vol. ORNL/TM-2004-137, July 2004.
[40]B. Sneyers, D. W. Novotny, and T. A. Lipo, "Field Weakening in Buried Permanent-Magnet Ac Motor-Drives," Ieee Transactions on Industry Applications, vol. 21, pp. 398-407, 1985.
[41]C. Jo, J. Y. Seol, and I. J. Ha, "Flux-weakening control of IPM motors with significant effect of magnetic saturation and stator resistance," Ieee Transactions on Industrial Electronics, vol. 55, pp. 1330-1340, Mar 2008.
[42]"American Wire Gauge table and AWG Electrical Current Load Limits," in http://www.powerstream.com/Wire_Size.htm Utah: Power Stream.
[43]V. Ostovic, Computer-aided Analysis of Electric Machines. New York: Prentice Hall, 1994.
[44]C. C. Hwang and Y. H. Cho, "Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors," Ieee Transactions on Magnetics, vol. 37, pp. 3021-3024, Jul 2001.
[45]Y. P. Yang, Y. P. Luh, C. H. Cheung, J. P. Wang, and S. W. Wu, "Multi-objective optimal design and current waveforms control of axial-flux brushless DC wheel motors for electric vehicles," Ieee International Symposium on Industrial Electronics, vol. 1, pp. 621-626, June 2003.
[46]C. T. Tseng, W. C. Liao, and T. C. Tang, "MOST User''s Manual," in Mechanical Engineering Hsinchu: National Chiao-Tung University, 1993.
[47]Y. P. Yang and C. C. Tu, "Multiobjective optimization of hard disk suspension assemblies. I. Structure design and sensitivity analysis," American Control Conference, vol. 59, pp. 757-770, 1996.
[48]Y. P. Yang and T. C. Chiao, "Multiobjective optimal design of a high speed brushless DC motor," Electric Machines and Power Systems, vol. 28, pp. 13-30, Jan 2000.
[49]A. Charnes and W. W. Cooper, Management Models and Industrial Applications of Linear Programming. New York: John Wiley and Sons, 1961.
[50]M. Zeleny, Multi Criteria Decision Making. New York: McGraw Hill, 1982.
[51]張六文 and 黃議興, "電磁鋼片的特性與應用," 馬達科技研究中心電子報, vol. 31, June 2003.
[52]Y. P. Yang and T. J. Wang, "Electronic gears for electric vehicles with wheel motor," Ieee Transactions on Industrial Electronics, p. 5, Nov. 2005.
[53]G. H. Kang, J. Hur, H. Nam, J. P. Hong, and G. T. Kim, "Analysis of irreversible magnet demagnetization in line- start motors based on the finite-element method," Ieee Transactions on Magnetics, vol. 39, pp. 1488-1491, May 2003.
[54]R. Dutta and M. F. Rahman, "A segmented magnet interior permanent magnet machine with wide constant power range for application in hybrid vehicles," Ieee Transactions on Vehicle Power and Propulsion, Sep 2005.
[55]R. Dutta and F. Rahman, "An investigation of a segmented rotor interior permanent magnet (IPM) machine for field weakening," The Fifth International Conference on Power Electronics and Drive Systems, vol. 1, pp. 491-496, Nov 2003.
[56]Y. Honda, H. Murakami, N. Kazushige, T. Higaki, S. Morimoto, and Y. Takeda, "Optimum design of a multilayer interior permanent magnet synchronous motor using reluctance torque," Electrical Engineering in Japan, vol. 127, pp. 64-72, Apr 15 1999.
[57]D. Pavlik, V. K. Garg, J. R. Repp, and J. Weiss, "A Finite-Element Technique for Calculating the Magnet Sizes and Inductances of Permanent-Magnet Machines," Ieee Transactions on Energy Conversion, vol. 3, pp. 116-122, Mar 1988.
[58]G. H. Kang, J. P. Hong, G. T. Kim, and J. W. Park, "Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis," Ieee Transactions on Magnetics, vol. 36, pp. 1867-1870, Jul 2000.
[59]L. C. Chang, "An improved FE inductance calculation for electrical machines," Ieee Transactions on Magnetics, vol. 32, pp. 3237-3245, Jul 1996.
[60]L. Chang, G. E. Dawson, and A. R. Eastham, "Permanent magnet synchronous motor design: Finite element and analytical methods," in Proc. Int. Conf. Elec. Machines, vol. 3, pp. 1082-1089, 1990.
[61]N. Bianchi and S. Bolognani, "Design techniques for reducing the cogging torque in surface-mounted PM motors," Ieee Transactions on Industry Applications, vol. 38, pp. 1259-1265, Sep-Oct 2002.
[62]A. Kioumarsi, M. Moallem, and B. Fahimi, "Mitigation of torque ripple in interior permanent magnet motors by optimal shape design," Ieee Transactions on Magnetics, vol. 42, pp. 3706-3711, Nov 2006.
[63]P. Turnbull, J. Kuo, R. Schultz, and B. Turner, "Thermal analysis of an electric machine for a hybrid vehicle," SAE International, Mar 2004.
[64]"Proto Laminations'' Electromagnetic Web Site," in http://www.protolam.com/ California: Proto Laminations Inc.
[65]F. Kreith and M. S. Bohn, Principles of Heat Transfer, sixth ed. United States Cengage Learning 2001.
[66]J. P. Holman, Heat Transfer, Ninth ed. New York: McGraw-Hill, 2001.
[67]G. H. Jang and C. J. Lee, "Design and control of the phase current of a brushless dc motor to eliminate cogging torque," Journal of Applied Physics, vol. 99, pp. -, Apr 15 2006.
[68]劉昌煥, 交流電機控制, 2nd ed. 台北市: 東華書局, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top