跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 19:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉璨維
研究生(外文):Tsan-Wei Liu
論文名稱:三維外形量測之彩色條紋投射順序設計
論文名稱(外文):Design of Color Fringe Projection Sequence for 3D Shape Measurement
指導教授:鍾添東鍾添東引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:160
中文關鍵詞:外形量測數位條紋投射法相位移法相位展開彩色耦合效應彩色不平衡效應
外文關鍵詞:shape measurementdigital fringe projectionphase shiftingphase unwrappingcolor coupling effectcolor imblance effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究不同的彩色條紋投射順序對於物體的外形量測之影響,以及提出一套簡易的色彩校正方法用以降低彩色耦合效應和彩色不平衡效應產生的色彩誤差。首先,設計三種不同的投射條紋圖樣,包括基本投射順序、不規則投射順序以及規則投射順序來進行三維量測的比較;可發現規則投射順序的重建結果能有效的降低相位誤差並提升量測品質。再者,將紅綠藍三色彩通道之光強度範圍各自做調整來降低彩色耦合效應及彩色不平衡效應,可突破非白色物體的量測限制。最後以Visual .NET C++語言整合分析程式,此程式結合相位移、相位壓縮、相位展開之步驟。利用此程式,測試數個量測範例。由結果可發現,使用規則投射順序的光柵條紋以及各自調整色彩光強度能有效提升三維量測的重建品質。
This thesis studies the effect of different color fringe projection sequences for 3D shape measurement of objects. A novel color correction method is also presented for reducing the image color errors induced from color coupling effect and color imbalance effect. First, three sequences of projected fringe patterns, including basic projection sequence, disordered projection sequence and ordered projection sequence, are designed. Effects of these three projection sequences on the quality of measured 3D object shapes are compared. It is found that the ordered projection sequence can reduce the phase errors effectively and improve the quality of the shape reconstruction results. Then, the image color intensity ranges for the red, green and blue color channels are adjusted respectively such that the color coupling effect and color imbalance effect can be reduced. The adjusted color intensities will also result in a breakthrough for measurement non-white object surfaces. Finally, an integrated program is developed in Visual .NET C++ by combining phase-shifting, phase-wrapping, and phase-unwrapping algorithms. 3D shapes of test objects are measured by this integrated program. From the research results, it shows that the reconstruction quality of the 3D shapes is improved by using the proposed ordered projection sequence and the respectively adjusted color intensities.
口試委員審定書 I
誌謝 II
中文摘要 III
英文摘要 IV
目錄 V
圖目錄 VIII
表目錄 XI
符號表 XIII

第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 5
1.3 研究動機與目的 10
1.4 研究方法 11
1.5 論文大綱 12

第二章 數位條紋投影法研究原理 13
2.1 相位移法 13
2.1.1 相位移干涉法 13
2.1.2 相位移法 15
2.2 相位重建 17
2.2.1 相位展開原理 18
2.2.2 不連續點的檢測 19
2.2.3 分枝切割線演算法 21
2.3 相位高度轉換 22
2.3.1 三角量測法 22
2.3.2 相位高度映射法 24
2.4 影像空間座標轉換 28
2.5 色彩誤差效應 31
2.5.1 彩色耦合效應 31
2.5.2 彩色不平衡效應 32

第三章 色彩校正方法及光柵設計 35
3.1 色彩校正方法 35
3.1.1 設計投影色彩強度 35
3.1.2 光強度範圍搜尋方法 37
3.1.3 色彩校正結果 40
3.2 光柵設計 42
3.2.1 不同相位移角度之彩色光柵設計 42
3.2.2 不同光柵設計之結果誤差比較 50
第四章 實作結果 57
4.1 量測系統架構 57
4.1.1 影像感應器規格 57
4.1.2 投影機規格 59
4.2 程式架構與流程 60
4.3 量測精確度 62
4.3.1 量測解析度 62
4.3.2 相位高度映射法之校正方法 63
4.3.3 量測標準設定 67
4.3.4 小型標準塊 68
4.3.5 大型標準塊 70
4.4 三維外形輪廓量測成果 72
4.4.1 白色物體之量測成果 73
4.4.2 小型物體之量測成果 81
4.4.3 單色物體之量測成果 89
4.4.4 彩色物體之量測成果 93
4.4.5 人體外形之量測成果 97

第五章 結論與建議 103
5.1 結論 103
5.2 建議 104

參考文獻 105

附錄A 基本光學原理介紹 109
A.1 波前方程式 110
A.2 干涉現象 111

附錄B 彩色條紋投射法CFPS之程式操作說明 113
B.1 CFPS程式軟體安裝說明及設定 113
B.2 CFPS之主程式操作介面及使用說明 113
B.3 相機控制介面及使用說明 120
B.4 環境設定介面 122
B.5 投射條紋設定介面 126
B.6 影像空間座標轉換設定介面 130

附錄C 彩色條紋投射法CFPS之程式碼說明 133
C.1 CFPS程式碼檔案介紹 133
C.2 CFPS使用參數說明 136
C.3 CFPS其餘函式說明 143


附錄D 簡易分析程式PMPS之程式操作說明 145
D.1 PMPS程式安裝說明 145
D.2 PMPS主程式操作介面 145

附錄E 簡易分析程式PMPS之程式碼說明 149
E.1 PMPS程式碼檔案介紹 149
E.2 PMPS使用參數說明 150
E.3 PMPS其餘函式說明 152

附錄F 資料點對位與整合操作說明 153
F.1 程式安裝說明 153
F.2 程式操作說明 154

作者簡歷 159
[1]范光照、章明、姚宏宗、許智欽、鄭正元, 逆向工程技術及應用,高立圖書有限公司,2003。
[2]T. T. Chung and C. Y. Liao, “An integrated scanning system for reconstructing 3D color models of general objects,” Proceedings of the 2005 IEEE International Conference on Mechatronics, 2005.
[3]J. Salvi, J. Pages and J. Battle, “Pattern codification strategies in structured light systems,” Pattern Recognition, vol.37, no.4, pp. 827-849, April 2004.
[4]Y. S. Chen and B. T. Chen, “Measuring of a three-dimensional surface by use of a spatial distance computation, ” Applied Optics, vol.42, no.11, pp.1958-1972, 2003.
[5]A. Laurentini, “Surface reconstruction accuracy for active volume intersection,” Pattern Recognition Letters, vol.17, no.12, pp.1285-1292, 1996.
[6]P. S. Huang, Q. Hu, F. Lin and F. P. Chiang, “Color-encoded digital fringe projection technique for high-speed three-dimensional surface,” Optical Engineering, vol.38, no.6, pp.1065-1071, 1999.
[7]V. Srinivasan, H. C. Liu and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Applied Optics., vol.23, no.18, September 1984.
[8]M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Applied Optics, vol.22, no.24, December 1983.
[9]L. Fu, Z. Li, L. Yang, Q. Yang and A. He, “New phase measurement profilemetry by grating projection,” Optical Engineering, vol.45, no.7, pp.07361, July 2006.
[10]R. Sitnik, M. Kujawinska and J. Woznicki, “Digital fringe projection system for large-volume360-deg shape measurement,” Optical Engineering, vol.41, no.2, pp.443-449, 2002.
[11]S. Zhang, “High-speed 3-D shape measurement based on digital fringe projection technique,” Mechanical Engineering of State University of New York, M.S. dissertation, 2003.
[12]P. S. Huang, Q. Y. Hu and F. P. Chiang, “Double three-step phase-shifting algorithm,” Applied Optics, vol.41, no.22, pp.4503-4509, August 2002.
[13]Q. Hu, K. G. Harding, X. Du and D. Hamilton, “Shiny parts measurement using color separation” Proceedings of SPIE, vol.6000, pp.60000D, 2005.
[14]H. Guo and P. S. Huang, “Absolute phase retrieval for 3D shape measurement by the Fourier transform method,” Proceedings of SPIE, vol.6762, pp.676204, 2007.
[15]P. Jia, J. Kofman and C. English, “Triangular phase-shifting algorithms for surface measurement,” Proceedings of SPIE, vol.6375, pp.63750C, 2006.
[16]P. Jia, J. Kofman and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement,” Optical Engineering, vol.46, no.8, August 2007.
[17]P. Jia, J. Kofman and C. English, “Multiple-step triangular-pattern phase shifting and the influence of number of steps and pitch on measurement accuracy,” Optical Society of America, vol.46, no.16, pp.3253-3262, June 2007.
[18]X. Su, W. Song, Y. Cao and L. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Optical Engineering, vol.43, no.3, pp.708-712, March 2004.

[19]Z. Zhang, D. Zhang and X. Peng, “Performance analysis of a 3D full-field sensor based on fringe projection,” Optics and Lasers in Engineering, vol.42, pp.341-353, 2003.
[20]P. J. Tavares and M. A. Vaz, “Linear calibration procedure for the phase-to-height relationship in phase measurement profilometry,” Optics Communications, vol.274, pp.307-314, 2007.
[21]Q. Kemao, S. H. Soon and A. Asundi, “Smoothing filters in phase-shifting interferometry,” Optics & Laser Technology, vol.35, no.8, pp.649-654, 2003.
[22]W. Zhou and X. Su, ‘‘A direct mapping algorithm for phase-measuring profilometry,’’ Journal of Modern Optics, vol.41, no.1, pp.89-94, 1994.
[23]H. Guo, H. He, Y. Yu and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Optical Engineering, vol.44, no.3, pp.033603, 2005.
[24]S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Proceedings of SPIE, vol. 6000, pp.60000E, 2005.
[25]D. P. Towers, T. R. Judge and P J. Bryanston-Cross, “Automatic interferogram analysis techniques applied to quasi-heterodyne holography and ESPI,” Optics and Laser in Engineering, vol.14, pp.239-281, 1991.
[26]徐偉盛,三維外形量測知N步彩色相位移法,國立台灣大學機械工程研究所碩士論文,2006。
[27]D. Malacara, Optical Shop Testing, John Wiley & Sons, 1992.
[28]K. J. Gasvik, Optical Metrology, John Wiley & Sons, 1995.
[29]Malacara, “Optical shop testing,” John Wiley & Sons, 1992.
[30]R. Cusack, J. M. Huntley and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Applied Optics, vol.34, no.5, pp.781-789, 1995.
[31] G. Fornaro, G. Franceschetti, R. Lanari, E. Sansosti and M. Tesauro, “Global and local phase-unwrapping techniques: a comparison,” Optical Society of America, vol.14, no.10, pp.2702-2708, 1997.
[32] Y. Lu, X. Wang and G. He, “Phase unwrapping based on branch cut placing and reliability ordering,” Optical Engineering, vol.44, no.5, pp.055601, 2005.
[33]M. A. Herraez, D. R. Burton, M. J. Lalor and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Applied Optics, vol.41, no.35, pp.7437-7444, 2002.
[34] R. M. Goldstein, H. A. Zebker and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Science, vol.23, pp.713-720, 1988.
[35] J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Applied Optics, vol.28, no.15, pp.3268-3270, 1989.
[36] J. M. Huntley, “Three-dimensional noise-immune phase unwrapping algorithm,” Applied Optics, vol.40, no.23, pp.3901-3908, 2001.
[37] H. A. Zebker and Y. Lu, “Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms,” Optical Society of America, vol.15, no.3, pp.586-598, 1998.
[38]D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Applied Optics, vol.30, no.25, pp.3627-3632, 1991.
[39] J. A. Quiroga, A. Gonza´lez-Cano and E. Bernabeu, “Phase-unwrapping algorithm based on an adaptive criterion,” Applied Optics, vol.34, no.14, pp.2560-2563, 1995.


[40] W. Xu and I. Cumming, “A region-growing algorithm for InSAR phase unwrapping,” IEEE Transactions on Geoscience and Remote Sensing, vol.37, no.1, pp.124-134, 1999.
[41]蔡怡庭,光學相位量測暨影像處理技術在電子構裝之應用,國立台灣大學應用力學研究所碩士論文,2000。
[42] T. J. Flynn, “Consistent 2-D phase unwrapping guided by a quality map,” IEEE Transactions on Geoscience and Remote Sensing, pp.2057-2059, 1996.
[43]P. Jia, J. Kofman and C. English, “Comparison of linear and nonlinear calibration methods for phase-measuring profilometry,” Optical Engineering, vol.46, no.4, pp.043601, April 2007.
[44]Y. Hao, S. Shuangyun and Z. Zhifeng, F. Qibo, “3D profilometry system based on absolute phase calibration,” Proceedings of SPIE , vol.6357, pp.63570M, 2006
[45]L. Yong, S. Xianyu and Z. Haihua, “A method for simplifying phase-height mapping in phase measurement profilometry,” Proceedings of SPIE, vol.6623, pp.66230S, 2007.
[46]黃文昭,三維外形量測之非線性數位條紋誤差校正,國立台灣大學機械工程研究所碩士論文,2006。
[47] 張振龍,360度立體快速量測系統與寬頻之應用,國立台灣大學機械工程研究所碩士論文,2001。
[48] M. A. Sid-Ahmed and M. T. Boraie, “Dual camera calibration for 3-D machine vision metrology”, IEEE Transactions on instrumentation and measurement, vol.39, no.3, pp.512-516, 1990.
[49]J. Heikkila and O. Silven, “Four-step camera calibration procedure with implicit image correction,” Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1106-1112, June 1997.
[50]J. Pan, P. S. Huang and F. P. Chiang, “Color phase-shifting method for three-dimensional shape measurement,” Optical Engineering, vol.45, no.1, pp.013602-1-013602-9, 2006.
[51]L. Jiang, S. Wu, D. Wu, E. Ong, and S. Rahardja, “3D shape modeling by color phase stepping light projection,” IEEE, vol.2, pp.97-100, 2003.
[52]S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Optical Engineering, vol.46, no.6, pp.063601, 2007.
[53]M. R. Gupta and T. Chen, “Vector color filter array demosaicing,” Information Systems Laboratory, Department of Electrical Engineering, Stanford University, CA 94305, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊