跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴建勳
研究生(外文):Chien-hsun Lai
論文名稱:類比分頻式助聽器之信號處理研究
論文名稱(外文):The Signal Processing of the MEMS-based Analog Hearing Aid
指導教授:周元昉
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:144
中文關鍵詞:表面聲波斜指電極指插電極助聽器週期性結構
外文關鍵詞:SAWSFITInterdigital transducerHearing aidsPeriodical structure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一種新型的類比式助聽器,信號處理皆在時域中進行,利用斜指插換能器的特性,設計一個可分頻調整各頻道權重的濾波器,依需求彈性調整通帶之頻率響應,應用在助聽器之聽力損失補償。此外,由於聲音信號的頻率較低,因此使用混波器將待處理的聲頻信號調變至較高頻率後,才送入濾波器中進行濾波,處理完成的信號再加以解調,轉換為聲頻信號輸出,有效縮小濾波器之尺寸。

週期性電極的壓電結構之中的波傳行為,為設計助聽器濾波器之基礎,論文中分析週期壓電半無限域中的表面聲波波傳,以及週期壓電平板中的板波波傳,再延伸至週期疊層平板之中的波傳行為。由壓電材料的本構方程式以及統御方程式推導出波動方程式,週期性壓電結構下之波傳通解,可由無限多個空間諧波的線性組合來表示,經由同時滿足波動方程式和邊界條件,得到壓電結構中波傳的色散關係,以及位移場和電位的分佈。其中分析了短路電極和開路電極,以及電極的質量及彈性效應等邊界狀況,探討不同的邊界狀況對於波傳的影響。

根據先前獲得的結果,再以Delta-function模型得到指插電極的轉移函數,設計板波濾波器,應用在助聽器中之聽力損失補償,其後,規劃濾波器之製程步驟,採用微機電技術製作成品,並搭配混波器製作助聽器之信號處理電路。最後,使用頻譜分析儀進行量測,並探討助聽器在音頻之特性表現。
In this thesis, a new analog hearing aid is proposed. The signals are processed in the time domain. The signals are treated by three stages as following: the anterior treatment stage, the channels filtering and adjusting stage, and the demodulation and output stage. In the anterior treatment stage, the signals received from the environment are filtered, amplified, and then modulated with the mixer. The modulated signals have higher frequency, equivalent to shorter wavelength, than the original ones. In the second stage, the modulated signals are filtered by a SFIT filter made by MEMS techniques and then adjusted the gain depending on the user’s hearing loss and the outside conditions. In the demodulation and output stage, signals are synthesizing and demodulating to drive the output speaker. The adoption of the mixer reduces the size of the channel filter in order to adapt to the micromachining techniques, leading to mass production and cost reducing.

The behaviors of waves propagating in periodic piezoelectric substrates are the base for designing SFIT filters. From Floquet’s theorem, displacements and the electric potential can be expressed as the summation of infinite space harmonics series. The dispersion curves are solved from satisfying wave equations and periodic boundary conditions. The influences of periodic electrodes are analyzed and discussed separately, including various electric boundary conditions and mechanical effects. According to the results of wave analysis, plate wave filters are designed and used in the hearing aids.
中文摘要…………………………………………….………………………………i
英文摘要…………………………………………….………………………………ii
目錄 ………………………………………………………………………...………iii
表目錄 …………………………………………………………….....……………vii
圖目錄 ……………………………………...……………………………….……viii
符號表 ……………………………………………………………………...…….xiii
第一章 緒論 …………………………………………………………..……… 1
1.1 研究動機 …………………………………………………………….… 1
1.2 文獻回顧 …………………………………………………………….… 1
1.2.1 助聽器之文獻回顧 …………………….……………………...1
1.2.2 表面聲波波傳之文獻回顧 …….…….……………………...3
1.2.3 壓電平板波傳之文獻回顧 …….…….……………………...6
1.3章節內容 …………………………………………………………..….… 9
第二章 週期性壓電半無限域之表面聲波波傳 ………….………………10
2.1 壓電材料之波動方程式 ………………….…………………………10
2.2 機械邊界條件 ………………………….….…………………………13
2.2.1不考慮電極的質量及彈性效應 ………………………….....13
2.2.2考慮電極的質量及彈性效應 …………………………….....14
2.3 電邊界條件 …………………………………………………………….18
2.3.1電極短路 ………………………………………………………...18
2.3.2無電源電極開路 ……………………………………………….21
2.3.3週期內之雙電極間有電位差 ……………………………….23
2.4 表面聲波之色散曲線及位移場及電位分佈 …………………...26
第三章 週期性壓電平板之板波波傳 ………………………………………30
3.1 壓電材料之波動方程式 …………………………………………….30
3.2 機械邊界條件 ……………………………………………………….32
3.3 電邊界條件………………………………………………...………….34
3.3.1電極短路 ..……………………………………………….…….34
3.3.2無電源電極開路 .…………………………………………….36
3.4週期疊層板理論 …..…………………………………………..……...39
3.5 板波之色散曲線及模態 …………………………………………….45
第四章 指插換能器之轉移函數 …………………………………………….48
4.1指插換能器 …………….…………………………………………….48
4.1.1 Delta-Function 模型 …………………………………………..48
4.1.2指插電極的相位線性度 ………………………………….…..51
4.2 斜曲指插換能 …………………………………………………………53
4.3 Withdrawal-weighting方法 ……………….………………………...56
4.4 S21與頻率響應………………………………………………….………59
4.5濾波器之設計 ………………………………………………….………60
第五章 助聽器的設計與製作 ………………………………..………………62
5.1助聽器 .…………………………….……………………………….……62
5.1.1助聽器簡介 .…………………………….……………...….……62
5.1.2類比式助聽器之信號處理架構 …………………………….63
5.2 濾波器之製程規劃及量測 …………………………………………65
5.2.1濾波器之製程規劃 ……………………………….…………...65
5.2.2濾波器之成品及阻抗匹配 ..………………………………...68
5.3混波電路分析及設計 ………………………………….……..............69
5.3.1混波原理 ……………………………………….………..............69
5.3.2混波電路分析及設計…………………………………………..72
5.4助聽器量及測結果 ………………………………………………….73
第六章 結論與建議 ……………………………………………………………75
附錄 ………………………………………………………………..………………78
A.1 Simplex方法 …………………………………………………………..78
A.2圓弧掃描法 …………………………………………………………….80
參考文獻 ..…………………………………………………………..…………….81
附表 ………………………………………………………………..…………….87
附圖 ………………………………………………………………..…………….92
[1]蘇妮股份有限公司, “助聽器,” 中華民國專利公告號:第200268號, February 1993
[2]飛利浦電子股份有限公司, “耳內助聽器,”中華民國專利公告號:第277308號, June 1996
[3]沙諾夫公司, “具聲音格式之助聽器,”中華民國專利公告號第465248號, November 2001
[4]Ludwig M. Morser, “Hearing aid with digital processing for: correlation of signals from plural microphones, dynamic range control, or filtering using an erasable memory,” U.S. Patent No. 4187413, April 1978
[5]Eric Lindermann and John L. Melanson, “Binaural hearing aid,” U.S. Patent No. 5479522, September 1993
[6]Henning Hougaard Andersen, and Carl Ludvigsen, “Hearing aid with beam forming properties,” U.S. Patent No. 6339647, January 2002
[7]殷特克系統公司, “具可規劃頻率響應之差動助聽器,” 中華民國專利公告號第071783號, Novemver 1985
[8]D. G. Gata, W. Sjursen and J. R. Hochschild, “A 1.1-V 270-μA Mixed-signal Hearing Aid Chip,” IEEE Solid-State Circuit, Vol. 37, No. 12, pp.1670-1678, Dec. 2002
[9]R. M. White and F. W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Applied Physics Letters, Vol. 7, No. 12, pp.314-316,1965
[10]B. A. Auld, Acoustic Fields and Waves in Solids , John Wiley & Sons Inc. 1973
[11]Daniel Royer and Eugene Dieulesaint, “Elastic Waves in Solids,” Springer-Verlag Berlin Heidelberg New York 1996
[12]C.K. Campbell. Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, INC. San Diego. 1997
[13]K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications, Springer, New York, 2000
[14]H. Mathews, Surface Wave Filters Design, Construction, and Use, John Wiley & Sons, New York, pp.20, 1979
[15]M. B. Schulz, B. J. Matsinger and M. G. Holland, “Temperature Dependence of Surface Acoustic Wave Velocity on Alpha Quartz,” Journal of Applied Physics, Vol.41, No.7, pp.2755-2765,1970
[16]Kjell Bløtekjær, Kjell A. Ingebrigtsen, and Halvor Skeie, “A Method for Analyzing Waves in Structures Consisting of Metal Strips on Dispersive Media”, IEEE Transactions on Electron Devices, Vol. ED-20, No. 12, pp.1133-1138, December 1973
[17]Kjell Bløtekjær, Kjell A. Ingebrigtsen, and Halvor Skeie, “Acoustic Surface Waves in Piezoelectric Materials with Periodic Metal Strips on the Surface”, IEEE Transactions on Electron Devices, Vol. ED-20, No. 12, pp.1139-1146, December 1973
[18]K. C. Waqgner and O. Manner, “Analysis of Obliquely Propagating SAWs in Periodic Array of Metal Strips,” Proceedings of IEEE Ultrasonics Symposiums, pp.427-431,1992
[19]H. P. Reichinger and A. R. Baghai-Wadji, ”Dynamic 2D Analysis of SAW-Devices Including Massloading”, Proceedings IEEE Ultrasonics Symposium, Vol.1, pp.7-10, October 1992
[20]P. Ventura, J. Desbois, and L. Boyer, “A Mixed FEM/Analytical Model of the Electrode Mechanical Perturbation for SAW and PSAW Propagation”, Proceedings of IEEE Ultrasonics Symposium, Vol.1, pp.205-208, October 1993
[21]K. Hashimoto, G. Q. Zheng, and M. Yamaguchi, ”Fast Analysis of SAW Propagation Under Multi-Electrode-Type Gratings with Finite Thickness”, Proceedings IEEE Ultrasonics Symposium, Vol.1, pp.279-284, October 1997
[22]V. Laude, T. Pastureaud, and S. Ballandras, “Surface Acoustic Waves Propagating on Piezoelectric Substrates Under Periodic Arrays with Large Electrode Thickness”, Proceedings of the 2001 IEEE International, pp.661-665, June 2001
[23]S. Liew and F. Josse, “Applications of lithium niobate acoustic plate mode as sensor for conductive liquids,” Proceedings IEEE Ultrasonics Symposium, pp:285-290, 1990
[24]G. De Cicco and B. Morten, ”Elastic surface waves based on piezoelectric thick films,” Proceedings IEEE Ultrasonics Symposium, pp:281-285, 1993
[25]G. De Cicco and B. Morten, ”A flowmeter operating with plate waves induced by piezoelectric thick films,” Proceedings IEEE Ultrasonics Symposium, pp:1327-1331, 1994
[26]Ph. Luginbuhl and S. D. Collins, “Ultrasonic flexural Lamb-wave actuators based on PZT thin film,” Sensors and Actuators A: Physical, pp:41-49, 1998
[27]Raymond D. Mindlin, “Thickness-Shear and Flexural Vibrations of Crystal Plates,” Journal of Applied Physics, Vol.22, No.3, pp.316-323, Jan. 1951
[28]Raymond D. Mindlin, “Forced Thickness-Shear and Flexural Vibrations of Piezoelectric Crystal Plates,” Journal of Applied Physics, Vol.23, No.1, pp.83-88, Jan. 1952
[29]H. F. Tiersten, “Thickness Vibration of Piezoelectric Plates,” The Journal of the Acoustical Society of America, Vol. 35, No. 1, pp:53-58, 1963
[30]H. F. Tiersten, “Wave Propagation in an Infinite Piezoelectric Plates,” The Journal of the Acoustical Society of America, Vol. 35, No. 2, pp:234-239, 1963
[31]C. T. Sun, J. D. Achenbach and G. Herrmann, “Time-Harmonic Waves in a Stratified Medium Propagating in the Direction of the Layering,” ASME Journal of Applied Mechanics, Vol. 35, No. 2, pp. 408-411, 1968
[32]P. C.Y. Lee and Nagyoung Chang, “Harmonic Waves in Elastic Sandwich Plates,” Journal of Elasticity, Vol. 9, No. 1, pp. 51-69,1979
[33]P. C. Y. Lee, S. Syngellakis and J. P. Hou, “A Two-dimensional Theory for High-frequency Vibration of Piezoelectric Crystal Plates With or Without Electrodes,” Journal of Applied Physics, Vol.61, No.4, pp:1249-1262, 1987
[34]S. G. Joshi and Y. Lin, “Propagation of Ultrasonic Lamb Waves in Piezoelectric Plates,” Journal of Applied Physics, Vol.70, No.8, pp:4113-4120, 1991
[35]Z. Wang and C. K. Jen, “Analytical Solutions for Sagittal Plane Waves in Three-Layer Composites,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 40, No. 4, July 1993
[36]Q. Wang and V. K. Varadan, “Wave Propagation in Piezoelectric Coupled Plates By Use Of Interdigital Transducer Part 1. Dispersion Characteristics,” International Journal of Solids and Structures, Vol.39, pp:1119-1130, 2002
[37]Q. Wang and V. K. Varadan, “Wave Propagation in Piezoelectric Coupled Plates By Use Of Interdigital Transducer Part 2. Wave Excitation by Interdigital Transducer,” International Journal of Solids and Structures, Vol.39, pp:1131-1144, 2002
[38]S. Datta and B. J. Hunsinger, ”First-Order Reflection Coeffcient of Surface Acoustic Waves from Thin-Strip Overlays”, Journal of Apply Physics, Vol.50, No.9, pp.5661-5665, September 1979
[39]Q. Xue and Y. Shui,”Analysis of Leaky-Surface-Wave Propagating under Periodic Metal Grating”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 37 , Issue: 1, pp:13-25, Jan. 1990
[40]W. P. Mason, ”Electromechanical Transducer and Wave Filters,” van Nortrand-Reinhold, 2nd edition, Princeton, New Jersy, 1948
[41]C.K. Campbell, “Wide-Band Linear Phase SAW Filter Design Using Slanted Transducer Fingers,” IEEE. Transactions on Sonics and Ultrasonics, Vol. SU-29, NO. 6, pp.224-228, July 1982
[42]N.J. Slater and C. K. Campbell, “Improved Modeling of Wide-Band Linear Phase SAW Filters Using Transducers with Curved Fingers,” IEEE. Transactions on Sonics and Ultrasonics, Vol. SU-31, NO. 1, pp.46-50, January 1984
[43]H. Yatsuda, Y. Takeuchi, and S. Yoshikawas, “New Design Techniques For SAW Filters Using Slanted-Finger IDTs,” Proc. IEEE Ultrasonics Symposium, pp.61-66, 1990
[44]Hiromi Yatsuda, “Design Techniques for SAW filters Using Slanted Finger Interdigital Transducers,” IEEE. Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, NO.2, pp.453-459, March 1997
[45]Hiromi Yatsuda, “Design Techniques for Nonlinear Phase SAW filters Using Slanted Finger Interdigital Transducers,” IEEE. Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, NO.1, pp.41-47, January 1998
[46]Hiromi Yatsuda, Kazuhiko Yamanouchi, “Automatic Computer-Aided Design of SAW Filters Using Slanted Finger Interdigital Transducers, ” IEEE. Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 47, NO.1, pp.140-147, January 2000.
[47]G. Martin and B. Steiner, “SAW Filters Including One-Focus Slanted Finger Interdigital Transducers,” Proc. IEEE Ultrasonics Symposium, pp.45-48, 2001
[48]Bernd Steiner, “Optimizing Slanted-Finger Interdigital Transducer (SFIT) Filters” Proc. IEEE Ultrasonics Symposium, pp.1-5, 2001
[49]David M. Pozar. Microwave Engineering 2nd Edition, John Wiley & Sons, INC. New York. 1998
[50]J. A. Nelder,. and R. Mead, “A Simplex Method for Function Minimization,” Computer Journal, Vol. 7, p. 308-313, 1965
[51]林新峰,無限大PZT平板之波動研究,國立台灣大學機械工程研究所碩士論文,中華民國八十九年六月。
[52]K. Hashimoto, and M. Yamaguchi, “Analysis of Excitation and Propagation of Acoustic Waves under Periodic Metallic-Grating Structure for SAW Device Modeling”, Proceedings IEEE Ultrasonics Symposium, Vol.1, pp.143-148, October 1993
[53]H.F. Winters and J. W. Coburn, “The etching of silicon with vapor,” American Institute of Physics, pp.70-73, 1978
[54]Patrick B. Chu, Jeffrey T. Chen, Richard Yeh, Gisela Lin, Jeff C. P. Huang, Brett A. Warneke and Kristofer S. J. Pister, “Controlled Pulse-Etching with Xenon Difluoride,” the 9th Inter. Conf. Solid-State Sensors & Actuators, Chicago, IL, June 1997
[55]劉國忠,週期結構疊層板之波傳分析,國立台灣大學機械工程研究所博士論文,中華民國九十三年七月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊