跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖柏亭
研究生(外文):Bo-Ting Liao
論文名稱:微機電技術應用於光開關之研製
論文名稱(外文):Development of Optical Switches Using MEMS-based Technology
指導教授:楊燿州楊燿州引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:200
中文關鍵詞:光開關光通訊微機電技術濕式非等向性蝕刻雙穩態致動器
外文關鍵詞:Optical switchoptical communicationMEMSwet anisotropic etchingbi-stable actuator
相關次數:
  • 被引用被引用:1
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係運用以微機電為基礎之技術,研製新型光開關元件,包括2×2光開關,及較高埠數之N×N複合式光開關等元件,進而改善傳統光開關所存在的缺點。在2×2光開關方面,本文提出一種新型的設計,謂之「分裂十字型光開關」。傳統的十字型光開關,存在因鏡面厚度影響所導致的光路偏移問題,及為降低此種光路偏移所造成的光損耗,需一厚度極薄之雙面反射鏡。分裂十字型光開關,則可避免此種因鏡面厚度所造成的光路偏移問題,且無鏡面厚度之限制。另外,相較於傳統的2×2鏡面陣列型光開關,分裂十字型光開關又有需較少致動器數量的優勢,故可增加製程與組裝的良率。
分裂十字型光開關,係由2個可動式鏡面、與2個固定式鏡面所組成,本研究並分別運用二種微致動器,控制可動式鏡面。這二種微致動器包括「靜電式梳狀致動器」,及「電熱式V型樑致動器」搭配「雙穩態機構」。其中,電熱式V型樑致動器搭配雙穩態機構,不僅可以控制微鏡面之運動,更能使得微鏡面停留於二個穩定狀態,進而減少光開關元件之耗能。分裂十字型光開關,可利用深式反應離子蝕刻技術於SOI晶圓上製造而得。實驗結果顯示,靜電式梳狀致動器與V型樑致動器的驅動電壓皆約40伏特,便能使得可動式鏡面產生60 m之位移量。分裂十字型光開關之平均插入損失約-1.1 ~ -1.4dB,而光開關元件之切換時間則可小於10 ms。
分裂十字型光開關,雖能解決傳統2×2光開關之缺點,但因受光路設計上的限制,故無法將此光路設計擴展至較高埠數之N×N光開關。因此,在較高埠數之N×N光開關方面,本研究將採用鏡面陣列式的光路設計,並結合微機電技術與傳統精密機械技術,以實現一擁有高精密度、高生產良率、低成本與低耗能的新型複合式N×N光開關,包含4×4及8×8複合式光開關。該複合式光開關,係由高精密度之微鏡面陣列,與擁有雙穩態特性之小型致動器陣列所組合而成。微鏡面陣列,包含垂直鏡面、懸臂樑、與光路凹槽等微結構,都可利用本研究所提出之單一步驟濕式非等向性蝕刻製程,便能同時蝕刻製造出來,故能有效地降低生產成本,及提高生產製造良率,而且微鏡面陣列更具有自我對準之能力,所以,可進一步地降低後續光開關組裝之困難度。小型致動器陣列,於4×4複合式光開關中,則使用市售之雙穩態致動器與L型推桿所組成;於8×8複合式光開關中,由於考量到需要使用更小體積之致動器驅動微鏡面陣列,故致動器陣列,遂由本研究自行開發之螺線管式雙穩態致動器與推桿所組成。
此外,本研究亦針對複合式光開關之驅動電路與電腦端控制程式進行研發,使得使用者可以透過電腦,輕易地控制該複合式光開關。實驗結果顯示,小型致動器陣列之驅動電壓約為5 ~ 6伏特,利用濕式非等向性蝕刻技術所製造之微鏡面,其表面粗糙度約為78nm。4×4複合式光開關之平均插入損失約為-1.6dB ~ -2.3dB;切換時間則可小於13ms;8×8複合式光開關之平均插入損失約為-2.2dB ~ -3.3dB;切換時間則可小於12ms。
In this work, novel MEMS-based optical switches, which include 2×2 optical switch and N×N hybrid optical switches, are presented. The proposed novel optical switches possess advantages over traditional optical switches.
A novel 2×2 MEMS optical switch using the proposed split cross-bar (SCB) design is demonstrated. When compared with the cross-bar switches, the SCB switch does not have the constraint on mirror thickness which affects fiber alignment significantly. When compared with the mirror-array switches, the SCB switch requires less movable mirrors and thus potentially gives better fabrication yield. The SCB switch consists of two fixed mirrors, two movable mirrors, and two actuators. Two types of actuators, including electrostatic comb-drive actuators and electrothermal V-beam actuators, are utilized. Furthermore, the electrothermal V-beam actuators are integrated with the bi-stable mechanism to move and latch the movable mirrors. Thus, the power consumption of the SCB switch can be greatly reduced.
The SCB device is easily realized by using inductively-coupled-plasma (ICP) etching on a silicon-on-insulator (SOI) wafer with one photo-mask. The comb-drive actuators and electrothermal V-beam actuators can move the movable mirrors with a displacement of 60 m under a driving voltage of 40V. The optical performance and the dynamic response of the SCB switch are also investigated. The measured insertion losses are between -1.1dB and -1.4dB and the measured switching time is less than 10 ms.
Although the SCB design can eliminate the drawbacks of traditional designs for 2×2 optical switches, it is not suitable to be utilized in N×N optical switch designs. Thus, the novel N×N hybrid optical switches, which include 4×4 and 8×8 hybrid switches, are presented in this work. The proposed hybrid switches comprising a MEMS-based micro-mirror array and a mini-actuator array possess the advantages of high precision, high yield, low cost, and low power-consumption. The micro-mirror array, which includes vertical mirrors, cantilevers, and light-path trenches, can be monolithically realized by using single-step KOH anisotropic etching process. The micro-mirrors can be naturally self-aligned and thus reduces the complexity of the packaging process. For 4×4 hybrid switch, commercially-available bi-stable actuators integrated with L-shape arms are used in the mini-actuator array. For 8×8 hybrid switch, smaller-footprint solenoid-based bi-stable actuators integrated with pushing arms are used in the mini-actuator array. Each micro-mirror of the mirror array can be individually actuated by the bi-stable actuator, and thus the power consumption of the system can be greatly reduced.
We also develop a driving circuit and a Window-based program for controlling the hybrid switches. Device characterizations and optical performance are also investigated. The driving voltage of the mini-actuator array is about 5 ~ 6 volt. The typical surface roughness of the fabricated mirrors is about 78nm. For 4×4 hybrid switch, the measured insertion losses are between -1.6dB and -2.3dB and the measured switching time is less than 13 ms. For 8×8 hybrid switch, the measured insertion losses are between -2.2dB and -3.3dB and the measured switching time is less than 12 ms.
致 謝 I
摘 要 III
Abstract V
圖目錄 X
表目錄 XV
符號說明 XVI
第一章 緒 論 1
1.1. 前言 1
1.2. 光通訊產業簡介 3
1.3. 研究動機及目的 8
1.4. 研究架構 9
第二章 各式光開關介紹 12
2.1. 機械式光開關 12
2.2. 液晶式光開關 17
2.3. 熱光式光開關 20
2.4. 微機電式光開關 23
2.4.1. 靜電式驅動 24
2.4.2. 電熱式驅動 29
2.4.3. 電磁式驅動 34
第三章 2×2光開關之研製 43
3.1. 傳統2×2光開關設計 43
3.2. 新型2×2光開關設計 45
3.3. 微致動器之設計 47
3.3.1. 靜電式梳狀致動器之設計 47
3.3.2. V型樑致動器與雙穩態機構之設計 53
3.3.2.1. 雙穩態機構之設計 53
3.3.2.2. V型樑致動器之設計 62
3.4. 2×2光開關之製程流程 69
3.5. 2×2光開關之實驗量測結果 77
3.5.1. 光纖之組裝與對位 78
3.5.2. 靜電式梳狀致動器之量測結果 81
3.5.3. V型樑致動器與雙穩態機構之量測結果 83
3.5.4. 2×2光開關之光學特性量測結果 85
3.6. 2×2光開關總結 87
第四章 4×4光開關之研製 88
4.1. 傳統N×N光開關之技術 88
4.2. 新型N×N複合式光開關之特點 89
4.3. 4×4複合式光開關之操作原理 90
4.4. 微鏡面陣列 94
4.4.1. 微鏡面陣列之光罩設計 95
4.4.2. 氫氧化鉀之蝕刻特性 97
4.4.3. 微鏡面陣列之蝕刻製程 100
4.5. 小型致動器陣列 109
4.6. 系統驅動電路架構 111
4.7. 4×4複合式光開關之實驗組裝與量測結果 117
4.8. 4×4複合式光開關總結 125
第五章 8×8光開關之研製 127
5.1. 8×8複合式光開關之操作原理 127
5.2. 螺線管式雙穩態小型致動器之操作原理 129
5.2.1. 螺線管式雙穩態致動器之設計 130
5.2.1.1. 螺線圈理論推導 130
5.2.1.2. 永久磁鐵間之磁力推導 133
5.2.1.3. 螺線管式致動器之雙穩態磁力推導 139
5.2.2. 螺線管式雙穩態致動器之製作 141
5.3. 8×8複合式光開關組裝 143
5.3.1. 小型致動器陣列之模組化組裝 143
5.3.2. 複合式光開關系統之組裝 145
5.4. 8×8複合式光開關之實驗量測結果 148
5.5. 8×8複合式光開關總結 152
第六章 結論與未來展望 154
6.1. 結論 154
6.2. 未來展望 157
參考文獻 158
個人簡歷 174
學術著作及專利 175
附錄 A 178
附錄 B 190
附錄 C 198
[1]K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies”, Proceedings of the Institution of Electrical Engineers-London, vol. 113, pp. 1151-1158, 1966.
[2]R. D. Maurer, and P. C. Schultz, “Fused silica optical waveguide”, U. S. Patent, patent no. 3659915, 1972.
[3]D. B. Keck, and P. C. Schultz, “Method of producing optical waveguide fibers”, U. S. Patent, patent no. 3711262, 1973.
[4]李廣浩,“產業轉折環境下企業變革策略之研究-以光通訊產業為例”,國立台灣大學國際企業學研究所碩士論文,2003。
[5]鍾沛璟,“2005台灣光通訊產業回顧”,光連雙月刊,61期,第37-39頁,2006。
[6]林穎毅,“2006全球光通訊市場綜覽”,光連雙月刊,67期,第39-43頁,2007。
[7]林穎毅,“寒冬待盡的光纖通訊產業”,光連雙月刊,15期,第13-19頁,2003。
[8]鍾沛璟,“光通訊市場走出陰霾 台灣廠商看準FTTH”,光連雙月刊,55期,第38-42頁,2005。
[9]鍾沛璟,“歐洲寬頻光通訊巡禮”,光連雙月刊,53期,第53-55頁,2004。
[10]林穎毅,“初探韓國光通訊產業與市場”,光連雙月刊,62期,第33-37頁,2006。
[11]財團法人資訊工業策進會,數位台灣2007,12月號,行政院科技顧問組,2007。
[12]財團法人資訊工業策進會,2006-2007資訊國力年鑑,行政院科技顧問組,2007。
[13]D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today”, IEEE Communications Magazine, vol. 40, pp. 75-79, 2002.
[14]M. Yano, F. Yamagishi, and T. Tsuda, "Optical MEMS for photonic switching-compact and stable optical cross-connect switches for simple, fast, and flexible wavelength applications in recent photonic networks," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 383-394, 2005.
[15]R. Goring, S. Glockner, and F. Bohrisch, "Miniaturized optical switches based on piezoelectrically driven microprism arrays," Proceedings of SPIE, vol. 2687, pp. 23-31, 1996.
[16]T. Matsui, F. Oohira, M. Hosogi, and T. Yamamoto, "Free-space optical switch modules using Risley optical beam deflectors," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 1658-1660, 2006.
[17]J. Duparre, B. Gotz, and R. Goring, "Micro-optical 1 x 4 fiber switch for multimode fibers with 600-mu m core diameters," Applied Optics, vol. 42, pp. 6889-6896, 2003.
[18]W. L. Lin, K. C. Fan, L. H. Chiang, Y. J. Yang, W. C. Kuo, and T. T. Chung, "A novel micro/nano 1 x 4 mechanical optical switch," Journal of Micromechanics and Microengineering, vol. 16, pp. 1408-1415, 2006.
[19]T. T. Chung, C. C. Lee, K. C. Fan, W. L. Lin, J. G. Peng, and H. Fan, "A miniature 1x2 mechanical optical switch with anti-thermal design," Journal of Micromechanics and Microengineering, vol. 16, pp. 1579-1586, 2006.
[20]K. C. Fan, W. L. Lin, T. T. Chung, H. Y. Wang, and L. P. Wu, "A miniature low cost and high reliability 1 x 2 mechanical optical switch," Journal of Micromechanics and Microengineering, vol. 15, pp. 1565-1570, 2005.
[21]J. F. Bao, Z. H. Cao, Y. Yuan, and X. Wu, "A non-silicon micro-machining based scalable fiber optic switch," Sensors and Actuators a-Physical, vol. 116, pp. 209-214, 2004.
[22]R. A. Soref, "Low crosstalk 2×2 optical switch," Optics Letters, vol. 6, pp. 275-277, 1981.
[23]Y. Fujii, "Low-crosstalk 2×2 optical switch composed of twisted nematic liquid-crystal cells," IEEE Photonics Technology Letters, vol. 5, pp. 715-718, 1993.
[24]N. A. Riza and S. Yuan, "Low optical interchannel crosstalk, fast switching speed, polarisation independent 2×2 fibre optic switch using ferroelectric liquid crystals," Electronics Letters, vol. 34, pp. 1341-1342, 1998.
[25]C. Vazquez, J. M. S. Pena, and A. L. Aranda, "Broadband 1 x 2 polymer optical fiber switches using nematic liquid crystals," Optics Communications, vol. 224, pp. 57-62, 2003.
[26]C. Vazquez, J. A. S. Pena, P. Contreras, and M. A. J. Pontes, "Development of a 2x2 optical switch for plastic optical fiber using liquid crystal cells," Proceedings of SPIE, vol. 5840, pp. 325-335, 2005.
[27]A. L. Zhang, K. T. Chan, M. S. Demokan, V. W. C. Chan, P. C. H. Chan, H. S. Kwok, and A. H. P. Chan, "Integrated liquid crystal optical switch based on total internal reflection," Applied Physics Letters, vol. 86, pp. 211108, 2005.
[28]M. C. Oh, H. J. Lee, M. H. Lee, J. H. Ahn, and S. G. Han, "Asymmetric X-junction thermooptic switches based on fluorinated polymer waveguides," IEEE Photonics Technology Letters, vol. 10, pp. 813-815, 1998.
[29]M. B. J. Diemeer, "Polymeric thermo-optic space switches for optical communications," Optical Materials, vol. 9, pp. 192-200, 1998.
[30]M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, "Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch," IEEE Photonics Technology Letters, vol. 16, pp. 2039-2041, 2004.
[31]Y. O. Noh, J. M. Kim, M. S. Yang, H. J. Choi, H. J. Lee, Y. H. Won, and S. G. Han, "Thermooptic 2x2 asymmetric digital optical switches with zero-voltage operation state," IEEE Photonics Technology Letters, vol. 16, pp. 446-448, 2004.
[32]D. G. Sun, Z. Y. Liu, Y. Zha, W. Y. Deng, Y. Zhang, and X. Q. Li, "Thermo-optic waveguide digital optical switch using symmetrically coupled gratings," Optics Express, vol. 13, pp. 5463-5471, 2005.
[33]Y. P. Li, J. Z. Yu, and S. W. Chen, "Rearrangeable nonblocking SOI waveguide thermooptic 4x4 switch matrix with low insertion loss and fast response," IEEE Photonics Technology Letters, vol. 17, pp. 1641-1643, 2005.
[34]J. W. Liu, J. Z. Yu, S. W. Chen, and J. S. Xia, "Fabrication and analysis of 2x2 thermo-optic SOI waveguide switch with low power consumption and fast response by anisotropy chemical etching," Optics Communications, vol. 245, pp. 137-144, 2005.
[35]J. Li, A. Q. Liu, X. M. Zhang, and T. Zhong, "Light switching via thermo-optic effect of micromachined silicon prism," Applied Physics Letters, vol. 88, p. 3, 2006.
[36]T. Zhong, X. M. Zhang, A. Q. Liu, J. Li, C. Lu, and D. Y. Tang, "Thermal-optic switch by total internal reflection of micromachined silicon prism," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 348-358, Mar-Apr 2007.
[37]Y. Sakamakia, S. Sohma, T. Saida, T. Hashimoto, H. Takahashi, and T. Shibata, "Loss reduction of silica-based 8 x 8 optical matrix switch by optimizing waveguide crossings using WFM method," IEICE Electronics Express, vol. 4, pp. 712-716, 2007.
[38]M. C. Wu, A. Solgaard, and J. E. Ford, "Optical MEMS for lightwave communication," Journal of Lightwave Technology, vol. 24, pp. 4433-4454, 2006.
[39]C. T. Leondes, MEMS/NEMS Handbook - Techniques and Applications - vol. 5, Springer Science+Business Media, New York, 2006.
[40]W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, "Applications of SOI-based optical MEMS," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 148-154, 2002.
[41]J. A. Walker, "The future of MEMS in telecommunications networks," Journal of Micromechanics and Microengineering, vol. 10, pp. R1-R7, 2000.
[42]K. Hogari and T. Matsumoto, "Electrostatically driven micromechanical 2 × 2 optical switch," Applied Optics, vol. 30, pp. 1253-1257, 1991.
[43]C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, "Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications," Journal of Microelectromechanical Systems, vol. 6, pp. 277-285, 1997.
[44]H. Toshiyoshi and H. Fujita, "Electrostatic micro torsion mirrors for an optical switch matrix," Journal of Microelectromechanical Systems, vol. 5, pp. 231-237, 1996.
[45]W. H. Juan and S. W. Pang, "High-aspect-ratio Si vertical micromirror arrays for optical switching," Journal of Microelectromechanical Systems, vol. 7, pp. 207-213, 1998.
[46]R. T. Chen, H. Nguyen, and M. C. Wu, "A high-speed low-voltage stress-induced micromachined 2 x 2 optical switch," IEEE Photonics Technology Letters, vol. 11, pp. 1396-1398, 1999.
[47]F. Chollet, M. de Labachelerie, and H. Fujita, "Compact evanescent optical switch and attenuator with electromechanical actuation," IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 52-59, 1999.
[48]S. S. Lee, L. S. Huang, C. J. Kim, and M. C. Wu, "Free-space fiber-optic switches based on MEMS vertical torsion mirrors," Journal of Lightwave Technology, vol. 17, pp. 7-13, 1999.
[49]C. Marxer and N. F. de Rooij, "Micro-opto-mechanical 2x2 switch for single-mode fibers based on plasma-etched silicon mirror and electrostatic actuation," Journal of Lightwave Technology, vol. 17, pp. 2-6, 1999.
[50]K. Bergman, N. Bonadeo, I. Brener, and K. Chiang, "Ultra-high capacity MEMS based optical cross-connects," Proceedings of SPIE, vol. 4408, pp. 2-5, 2001.
[51]L. Dellmann, W. Noell, C. Marxer, K. Weible, M. Hoffmann, and N. F. de Rooij, "4x4 matrix switch based on MEMS switches and integrated waveguides," in Proceedings of Transducers’01, Munich, Germany, pp. 1332-1335, 2001.
[52]M. Hoffmann, D. Nusse, and E. Voges, "Electrostatic parallel-plate actuators with large deflections for use in optical moving-fibre switches," Journal of Micromechanics and Microengineering, vol. 11, pp. 323-328, 2001.
[53]M. Hoffmann, D. Nusse, and E. Voges, "An electrostatically actuated 1 x 2 moving-fiber switch," IEEE Photonics Technology Letters, vol. 15, pp. 39-41, 2003.
[54]J. Li, Q. X. Zhang, and A. Q. Liu, "Advanced fiber optical switches using deep RIE (DRIE) fabrication," Sensors and Actuators a-Physical, vol. 102, pp. 286-295, 2003.
[55]A. C. M. Ruzzu, D. Haller, J. A. Mohr, and U. Wallrabe, "Optoelectromechanical switch array with passively aligned free-space optical components," Journal of Lightwave Technology, vol. 21, pp. 664-671, 2003.
[56]Y. R. Yang, W. P. Liu, Y. M. Wu, J. Y. Yang, and Y. L. Wang, "Novel MEMS torsional mirror optical switch," Proceeding of SPIE, vol. 5281, pp. 718-726, 2003.
[57]D. T. Fuchs, C. R. Doerr, V. A. Aksyuk, M. E. Simon, L. W. Stulz, S. Chandrasekhar, L. L. Buhl, M. Cappuzzo, L. Gomez, A. Wong-Foy, E. Laskowski, E. Chen, and R. Pafchek, "A hybrid MEMS-waveguide wavelength selective cross connect," IEEE Photonics Technology Letters, vol. 16, pp. 99-101, 2004.
[58]J. N. Kuo, G. B. Lee, and W. F. Pan, "A high-speed low-voltage double-switch optical crossconnect using stress-induced bending, micromirrors," IEEE Photonics Technology Letters, vol. 16, pp. 2042-2044, 2004.
[59]C. T. Pan, "Silicon-based coupling platform for optical fiber switching in free space," Journal of Micromechanics and Microengineering, vol. 14, pp. 129-137, 2004.
[60]Z. F. Wang, W. Cao, X. C. Shan, J. F. Xu, S. P. Lim, W. Noell, and N. F. de Rooij, "Development of 1x4 MEMS-based optical switch," Sensors and Actuators a-Physical, vol. 114, pp. 80-87, 2004.
[61]G. Wu, A. R. Mirza, S. K. Gamage, L. Ukrainczyk, N. Shashidhar, G. Wruck, and M. Ruda, "Design and use of compact lensed fibers for low cost packaging of optical MEMS components," Journal of Micromechanics and Microengineering, vol. 14, pp. 1367-1375, 2004.
[62]P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, "Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch," Journal of Microelectromechanical Systems, vol. 14, pp. 261-273, 2005.
[63]R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, "Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications," Sensors and Actuators a-Physical, vol. 123-24, pp. 570-583, 2005.
[64]H. N. Kwon, M. G. Kim, I. H. Hwang, Y. K. Yun, S. J. Kim, and J. H. Lee, "2 x 4 optical add-drop module with no difference in propagation length," IEEE Photonics Technology Letters, vol. 17, pp. 774-776, 2005.
[65]D. M. Sun, W. Dong, G. D. Wang, C. X. Liu, X. Yan, B. K. Xu, and W. Y. Chen, "Study of a 2 x 2 MOEMS optical switch with electrostatic actuating," Sensors and Actuators a-Physical, vol. 120, pp. 249-256, 2005.
[66]R. Guerre, F. Fahrni, and P. Renaud, "Fast 10-mu s microelectromechanical optical switch inside a planar hollow waveguide (PHW)," Journal of Lightwave Technology, vol. 24, pp. 1486-1498, 2006.
[67]H. N. Kwon, T. H. Kim, H. Toshiyoshi, and J. H. Lee, "Attenuation-controllable micromachined 2x2 optical switches using 45-deg micromirrors," Optical Engineering, vol. 45, p. 6, 2006.
[68]M. A. Basha, N. Dechev, S. Safavi-Naeini, and S. K. Chaudhuri, "A scalable 1 x N optical MEMS switch architecture utilizing a microassembled rotating micromirror," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, pp. 336-347, 2007.
[69]Y. J. Yang, W. C. Kuo, K. C. Fan, and W. L. Lin, "A 1x2 optical fiber switch using a dual-thickness SOI process," Journal of Micromechanics and Microengineering, vol. 17, pp. 1034-1041, 2007.
[70]E. Bulgan, Y. Kanamori, and K. Hane, "Submicron silicon waveguide optical switch driven by microelectromechanical actuator," Applied Physics Letters, vol. 92, 2008.
[71]Q. H. Chen, W. G. Wu, Z. Q. Wang, G. Z. Yan, and Y. L. Hao, "Optical design and performance of a novel multifunction optical device," Microwave and Optical Technology Letters, vol. 50, pp. 2185-2189, 2008.
[72]Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, "Novel multifunctional device for optical power splitting, switching, and attenuating," IEEE Photonics Technology Letters, vol. 20, pp. 632-634, 2008.
[73]C. P. Jia, W. Dong, C. X. Liu, J. G. Zhou, X. D. Zhang, D. M. Sun, H. D. Zang, W. Xuan, B. K. Xua, and W. Y. Chen, "Fabrication of the slanted electrode matrix on tilting 4.5 degrees (111) silicon," Optik, vol. 119, pp. 23-28, 2008.
[74]Z. Wan, Y. Wu, J. Yuan, and J. Xu, "1x8 fiber-optic switch based on an innovative waveguide converter and a micro torsion mirror," Applied Optics, vol. 47, pp. 3333-3337, 2008.
[75]P. Kopka, M. Hoffmann, and E. Voges, "Coupled U-shaped cantilever actuators for 1 x 4 and 2 x 2 optical fibre switches," Journal of Micromechanics and Microengineering, vol. 10, pp. 260-264, 2000.
[76]C. Lee and C. Y. Wu, "Study of electrothermal V-beam actuators and latched mechanism for optical switch," Journal of Micromechanics and Microengineering, vol. 15, pp. 11-19, 2005.
[77]F. Pieri and M. Piotto, "A micromachined bistable 1 x 2 switch for optical fibers," Microelectronic Engineering, vol. 53, pp. 561-564, 2000.
[78]K. R. Cochran, L. Fan, and D. L. DeVoe, "High-power optical microswitch based on direct fiber actuation," Sensors and Actuators a-Physical, vol. 119, pp. 512-519, 2005.
[79]W. C. Chen, C. Lee, C. Y. Wu, and W. L. Fang, "A new latched 2 x 2 optical switch using bi-directional movable electrothermal H-beam actuators," Sensors and Actuators a-Physical, vol. 123-24, pp. 563-569, 2005.
[80]Y. J. Yang, B. T. Liao, and W. C. Kuo, "A novel 2x2 MEMS optical switch using the split cross-bar design," Journal of Micromechanics and Microengineering, vol. 17, pp. 875-882, 2007.
[81]M. F. Dautartas, A. M. Benzoni, Y. C. Chen, G. E. Blonder, B. H. Johnson, C. R. Paola, E. Rice, and Y. H. Wong, "A silicon-based moving-mirror optical switch," Journal of Lightwave Technology, vol. 10, pp. 1078-1083, 1992.
[82]T. Matsuura, T. Fukami, M. Chabloz, Y. Sakai, S. Izuo, A. Uemura, S. Kaneko, K. Tsutsumi, and K. Hamanaka, "Silicon micro optical switching device with an electromagnetically operated cantilever," Sensors and Actuators a-Physical, vol. 83, pp. 220-224, 2000.
[83]D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, "Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch," Journal of Microelectromechanical Systems, vol. 14, pp. 274-284, 2005.
[84]J. J. Bernstein, W. P. Taylor, J. D. Brazzle, C. J. Corcoran, G. Kirkos, J. E. Odhner, A. Pareek, M. Waelti, and M. Zai, "Electromagnetically actuated mirror arrays for use in 3-D optical switching applications," Journal of Microelectromechanical Systems, vol. 13, pp. 526-535, 2004.
[85]C. H. Ji, Y. Yee, J. Choi, S. H. Kim, and J. U. Bu, "Electromagnetic 2 x 2 MEMS optical switch," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 545-550, 2004.
[86]G. D. J. Su, C. W. Chiu, and F. Jiang, "Vertical micromirrors integrated with electromagnetic microactuators for two-dimensional optical matrix switches," IEEE Photonics Technology Letters, vol. 17, pp. 1860-1862, 2005.
[87]H. T. Hsieh, C. W. Chiu, T. Tsao, F. K. Jiang, and G. D. J. Su, "Low-aduation-voltage MEMS for 2-D optical switches," Journal of Lightwave Technology, vol. 24, pp. 4372-4379, 2006.
[88]Z. L. Huang and J. Shen, "Latching micromagnetic optical switch," Journal of Microelectromechanical Systems, vol. 15, pp. 16-23, 2006.
[89]S. H. Jia, G. F. Ding, X. L. Zhao, and C. S. Yang, "Novel optic-fiber switches based on the wobble-type MEMS electromagnetic microactuator," Optics and Laser Technology, vol. 39, pp. 353-358, 2007.
[90]W. Li, J. Q. Liang, Z. Z. Liang, X. Q. Li, W. B. Wang, Y. C. Zhong, and D. G. Sun, "Design and fabrication of a micro-optic switch," Optics Express, vol. 16, pp. 6324-6330, 2008.
[91]P. Helin, M. Mita, T. Bourouina, G. Reyne, and H. Fujita, "Self-aligned micromachining process for large-scale, free-space optical cross-connects," Journal of Lightwave Technology, vol. 18, pp. 1785-1791, 2000.
[92]H. Maekoba, P. Helin, G. Reyne, T. Bourouina, and H. Fujita, "Self-aligned vertical mirror and V-grooves applied to an optical-switch: modeling and optimization of bi-stable operation by electromagnetic actuation," Sensors and Actuators a-Physical, vol. 87, pp. 172-178, 2001.
[93]L. Houlet, P. Helin, T. Bourouina, G. Reyne, E. Dufour-Gergam, and H. Fujita, "Movable vertical mirror arrays for optical microswitch matrixes and their electromagnetic actuation," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 58-63, 2002.
[94]J. D. Grade, H. Jerman, and T. W. Kenny, "Design of large deflection electrostatic actuators," Journal of Microelectromechanical Systems, vol. 12, pp. 335-343, 2003.
[95]郭文正,“高深寬比懸浮微結構之製程開發及在微機電式光開關的應用”,國立台灣大學機械工程研究所博士論文,2006。
[96]R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, "Comb-drive actuators for large displacements," Journal of Micromechanics and Microengineering, vol. 6, pp. 320-329, 1996.
[97]J. Qiu, J. H. Lang, and A. H. Slocum, "A curved-beam bistable mechanism," Journal of Microelectromechanical Systems, vol. 13, pp. 137-146, 2004.
[98]D. L. Wilcox and L. L. Howell, "Fully compliant tensural bistable micromechanisms (FTBM)," Journal of Microelectromechanical Systems, vol. 14, pp. 1223-1235, 2005.
[99]M. Vangbo, "An analytical analysis of a compressed bistable buckled beam," Sensors and Actuators a-Physical, vol. 69, pp. 212-216, 1998.
[100]J. M. Maloney, D. S. Schreiber, and D. L. DeVoe, "Large-force electrothermal linear micromotors," Journal of Micromechanics and Microengineering, vol. 14, pp. 226-234, 2004.
[101]C. J. Glassbrenner and G. A. Slack, "Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point," Physical Review a-General Physics, vol. 134, pp. 1058-1069, 1964.
[102]R. B. Roberts, "Thermal expansion reference data: silicon 300-850 K," Journal of Physics D-Applied Physics, vol. 14, pp. L163-L166, 1981.
[103]A. Goldsmith, T. E. Waterman, H. J. Hirschhorn, Handbook of thermo- physical properties of solid materials, Pergamon Press, 1961.
[104]Y. Mita, M. Sugiyama, M. Kubota, F. Marty, T. Bourouina, T. Shibata, and Ieee, "Aspect ratio dependent scalloping attenuation in DRIE and an application to low-loss fiber-optical switches," in Proceedings of 19th IEEE International Conference on Microelectromechanical Systems (MEMS 2006), Istanbul, Turkey, pp. 114-117, 2006.
[105]J. Hsieh and W. L. Fang, "A boron etch-stop assisted lateral silicon etching process for improved high-aspect-ratio silicon micromachining and its applications," Journal of Micromechanics and Microengineering, vol. 12, pp. 574-581, 2002.
[106]Product Information of Corning OptiFocusTM Collimating Lensed Fiber, Corning Inc., 2003.
[107]T. Mori, S. Sugawara, K. Adachi, K. Mori, and S. Satoh, "Silicon microoptical mirrors to make close parallel beams with conventional laser diodes," Journal of Microelectromechanical Systems, vol. 14, pp. 37-43, 2005.
[108]Y. Uenishi, M. Tsugai, and M. Mehregany, "Micro-opto-mechanical devices fabricated by anisotropic etching of (110) silicon," Journal of Micromechanics and Microengineering, vol. 5, pp. 305-312, 1995.
[109]C. Strandman, L. Rosengren, H. G. A. Elderstig, and Y. Backlund, "Fabrication of 45 degrees mirrors together with well-defined V-grooves using wet anisotropic etching of silicon," Journal of Microelectromechanical Systems, vol. 4, pp. 213-219, 1995.
[110]O. Powell and H. B. Harrison, "Anisotropic etching of {100} and {110} planes in (100) silicon," Journal of Micromechanics and Microengineering, vol. 11, pp. 217-220, 2001.
[111]Product Information of Single-mode Single-fiber Collimator, Photop Inc., 2006.
[112]G. Ensell, "Alignment of mask patterns to crystal orientation," Sensors and Actuators a-Physical, vol. 53, pp. 345-348, 1996.
[113]M. Vangbo and Y. Backlund, "Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching," Journal of Micromechanics and Microengineering, vol. 6, pp. 279-284, 1996.
[114]J. M. Lai, W. H. Chieng, and Y. C. Huang, "Precision alignment of mask etching with respect to crystal orientation," Journal of Micromechanics and Microengineering, vol. 8, pp. 327-329, 1998.
[115]Product Information of TQ Relays, Panasonic Inc.
[116]施順智,“雙穩態電磁致動式光開關系統之開發”,國立台灣大學機械工程研究所碩士論文,2008。
[117]R. Agarwal, S. Samson, and S. Bhansali, "Fabrication of vertical mirrors using plasma etch and KOH:IPA polishing," Journal of Micromechanics and Microengineering, vol. 17, pp. 26-35, 2007.
[118]M. McCaig and A. G. Gregg, Permanent Magnets in Theory and Practice, John Wiley & Sons, Inc., New York, 1987.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top