( 您好!臺灣時間:2021/07/27 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hsuan-Tsung Chen
論文名稱(外文):Multivariable Robust Control of a Proton Exchange Membrane Fuel Cell System
外文關鍵詞:Proton Exchange Membrane Fuel CellRobust controlSystem identificationFixed-order optimizationHydrogen efficiencySystem implementation
  • 被引用被引用:7
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This paper applies multivariable robust control strategies-central control and fixed-order control to a proton exchange membrane fuel cell (PEMFC) system and implements the designed controllers on a microchip for system miniaturization. From the system point of view, a PEMFC can be modeled as a two-input-two-output system, where the inputs are air and hydrogen flow rates and the outputs are cell voltage and current. By fixing the output resistance, the system can be further reduced to a two-input-single-output system. That is, we can either control the cell voltage or current output by regulating the air and the hydrogen flow rates. Since most electrical equipment requires constant voltage supply, in this thesis we aim to control the cell voltage output. Due to the nonlinear characteristics of this system, multivariable robust controllers were designed to provide robust performance and to reduce the hydrogen consumption of this system. However, for standard robust control design, the order of resulting controllers is constrained by the plants and weighting functions. For hardware implementation, controllers with lower orders are preferable in terms of computing efforts and cost. Therefore, we apply fixed-order robust control algorithms to design controllers with specified orders for a PEMFC, and evaluate efficiency of the system employing these controllers. Furthermore, the designed controllers are implemented on a microchip for system miniaturization. From the experimental results, multivariable robust control is deemed effective in supplying steady power and reducing fuel consumption.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 序論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 各章摘要 6
第二章 燃料電池簡介 7
2.1 燃料電池的歷史 7
2.2 燃料電池工作原理 7
2.3 燃料電池的種類與特性 8
2.4 燃料電池的優缺點與特色 11
第三章 質子交換膜燃料電池數學模型建立 14
3.1 質子交換膜燃料電池的系統架構 14
3.2 質子交換膜燃料電池的自由能與理想電位 16
3.2.1 理想電位與溫度的關係 17
3.2.2 理想電位與氣體壓力的關係 19
3.3 極化現象 20
3.4 燃料電池的動態模型 22
3.4.1 動態模型建立的基本假設 23
3.4.2 陰極氣體擴散模型 23
3.4.3 陰極電化學動力模型 24
3.4.4 電池內阻模型 26
第四章 系統識別 29
4.1 系統識別的原理與方法 29
4.2 部分空間系統識別法 31
4.3 系統識別實驗規劃 34
4.4 系統識別實驗結果 38
第五章 強韌控制理論介紹和設計 40
5.1 範數定義 40
5.1.1 訊號及系統的範數表示 41
5.2 強韌控制結構的一般化 42
5.3 系統不確定性 44
5.4 強韌性概念與分析 48
5.5 標稱系統的選擇 49
5.6 次最佳化 強韌性控制器設計 55
5.7 定階控制器設計 58
5.8 迴路成形設計 62
5.9 控制器的合成 65
第六章 強韌控制器的實驗結果與討論 67
6.1 利用個人電腦實現控制器 67
6.1.1 定電壓質子交換膜燃料電池實驗 68
6.1.2 定電流質子交換膜燃料電池實驗 73
6.2 控制系統性能驗證 75
6.3 利用單晶片實現控制器 83
第七章 結論與未來展望 87
7.1 結論 87
7.2 未來展望 89
參考文獻 91
附錄 95
口試委員問題與回答 98
[1]Brey, J.J., et al., Power conditioning of fuel cell systems in portable applications. International Journal of Hydrogen Energy, 2007. 32(10-11): p. 1559-1566.
[2]TEXAS INSTRUMENT:DC/DC converter(tps40200):http://www.ti.com/.
[3]Forrai, A., et al., Fuel-Cell Parameter Estimation and Diagnostics. Energy Conversion, IEEE Transaction on, 2005. 20(3): p. 668-675.
[4]Kazim, A. and P. Lund. Basic parametric study of a proton exchange membrane fuel cell. in Proceedings of the Institution of Mechanical Engineers 2006.
[5]Wahdame, B., D. Candusso, and J.-M. Kauffmann, Study of gas pressure and flow rate influences on a 500 W PEM fuel cell, thanks to the experimental design methodology. Journal of Power Sources, 2006. 156(1): p. 92-99.
[6]Thounthong, P., S. Rael, and B. Davat, Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. Journal of Power Sources, 2006. 158(1): p. 806-814.
[7]Lee, H.S., K.S. Jeong, and B.S. Oh, An experimental study of controlling strategies and drive forces for hydrogen fuel cell hybrid vehicles. International Journal of Hydrogen Energy, 2003. 28(2): p. 215-222.
[8]Wai, R.J., L.W. Liu, and R.Y. Duan, High-Efficiency Voltage-Clamped DC--DC Converter With Reduced Reverse-Recovery Current and Switch-Voltage Stress. Industrial Electronics, IEEE Transactions on, 2006. 53(1): p. 272-280.
[9]Jiang, Z., et al., Design and experimental tests of control strategies for active hybrid fuel cell/battery power sources. Journal of Power Sources, 2004. 130(1-2): p. 163-171.
[10]El-Shater, T.F., M.N. Eskander, and M.T. El-Hagry, Energy flow and management of a hybrid wind/PV/fuel cell generation system. International Journal of Sustainable Energy, 2006. 25(2): p. 91 - 106.
[11]Woo, C.H. and J.B. Benziger, PEM fuel cell current regulation by fuel feed control. Chemical Engineering Science, 2007. 62(4): p. 957-968.
[12]Sedghisigarchi, K. and A. Feliachi. H-infinity controller for solid oxide fuel cells. in Proceedings of the 35th Southeastern Symposium on System Theory. 2003.
[13]Rodatz, P., G. Paganelli, and L. Guzzella. Optimizing air supply control of a PEM fuel cell system. in Proceedings of the American Control Conference. 2003.
[14]Di Domenico, A., et al. Multi-variable control for an automotive traction PEM fuel cell system. in Proceedings of the 2006 American Control Conference. 2006.
[15]Vega-Leal, A.P., et al., Design of control systems for portable PEM fuel cells. Journal of Power Sources, 2007. 169(1): p. 194-197.
[16]Methekar, R.N., V. Prasad, and R.D. Gudi, Dynamic analysis and linear control strategies for proton exchange membrane fuel cell using a distributed parameter model. Journal of Power Sources, 2007. 165(1): p. 152-170.
[17]Jurado, F. and J.R. Saenz, Adaptive control of a fuel cell-microturbine hybrid power plant. Energy Conversion, IEEE Transaction on, 2003. 18(2): p. 342-347.
[18]Zenith, F. and S. Skogestad, Control of fuel cell power output. Journal of Process Control, 2007. 17(4): p. 333-347.
[19]Arango, E., et al. Fuel Cell Power Output Using a LQR Controlled AIDB Converter. in Clean Electrical Power, 2007. ICCEP ''07. International Conference on. 2007.
[20]Georgiou, T.T. and M.C. Smith, Optimal robustness in the gap metric. Automatic Control, IEEE Transactions on, 1990. 35(6): p. 673-686.
[21]Vinnicombe, G., Frequency domain uncertainty and the graph topology. Automatic Control, IEEE Transactions on, 1993. 38(9): p. 1371-1383.
[22]Zhou, K., J. Doyle, and K. Glover, Robust and optimal control. 1996. 596 p.
[23]Wang, F.C., et al., System identification and robust control of a portable proton exchange membrane full-cell system. Journal of Power Sources, 2007. 164(2): p. 704-712.
[24]Wang, F.C., et al. Proton exchange membrane fuel cell system identification and control - Part II: H-infinity based robust control. in Proceedings of 4th International ASME Conference on Fuel Cell Science, Engineering and Technology. 2006.
[25]Wang, F.C., et al., Multivariable robust control of a proton exchange membrane fuel cell system. Journal of Power Sources, 2008. 177(2): p. 393-403.
[26]LARMINIE James, D.A., Fuel cell systems explained 2003: wiley.
[27]Ceraolo, M., C. Miulli, and A. Pozio, Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description. Journal of Power Sources, 2003. 113(1): p. 131-144.
[28]Van Overschee, P. and B. De Moor, N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 1994. 30(1): p. 75-93.
[29]Verhaegen, M., Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica, 1994. 30(1): p. 61-74.
[30]Mocoteguy, P., et al., Monodimensional modeling and experimental study of the dynamic behavior of proton exchange membrane fuel cell stack operating in dead-end mode. Journal of Power Sources, 2007. 167(2): p. 349-357.
[31]John C. Doyle, B.A.F., Allen R. Tannenbaum, Feedback control theory 1992, New York.
[32]Glover, K. and D.C. McFarlane, Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. 1989: Springer-Verlag New York, Inc. 217.
[33]Georgiou, T.T. and M.C. Smith, Robust stabilization in the gap metric: controller design for distributed plants. Automatic Control, IEEE Transactions on, 1992. 37(8): p. 1133-1143.
[34]Burke, J.V., et al. HIFOO-A MATLAB package for fixed-order controller design and H-nfinity optimization. in IFAC, Symposium on Robust Cntrol Design 2006. Toulouse,France.
[35]Rao, S.S., Engineering optimization :theory and practice 1996, New York Wiley.
[36]Burke, J.V., A.S. Lewis, and M.L. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 2005. 15(3): p. 751-779.
[37]Burke, J.V., et al., Stabilization via Nonsmooth, Nonconvex Optimization. Automatic Control, IEEE Transactions on, 2006. 51(11): p. 1760-1769.
[38]Burke, J.V. and D.R. Luke, Variational analysis applied to the problem of optical phase retrieval. SIAM Journal on Control and Optimization, 2003. 42(2): p. 576-595.
[39]Mass flow meter:www.alicatscientific.com.
[40]Microchip Technology Inc. (18F4480):www.microchip.com.
[41]National Instrument: DAQ Card-6036E:www.ni.com.
[43]Topcu, E.E., I. Yuksel, and Z. Kamis, Development of electro-pneumatic fast switching valve and investigation of its characteristics. Mechatronics, 2006. 16(6): p. 365-378.
第一頁 上一頁 下一頁 最後一頁 top