跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳柏仁
研究生(外文):Bo-Ren Chen
論文名稱:單邊擺動壓電式薄膜泵之設計與應用分析
論文名稱(外文):Design and Application of a One-side Actuating Diaphragm Micropump
指導教授:馬小康馬小康引用關係
指導教授(外文):Hsiao-Kang Ma
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:139
中文關鍵詞:微泵壓電裝置液冷閥體冷卻水套
外文關鍵詞:MicropumpPiezoelectric deviceLiquid coolingValveCold Plate
相關次數:
  • 被引用被引用:7
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係針對本團隊研發之單邊擺動壓電式薄膜泵進行分析與設計應用。該泵為一新式之壓電式薄膜泵,其利用壓電片震動來改變薄膜形狀,並藉由擺動之PDMS薄膜來驅動流體,並使用PDMS之閥體來控制流體方向。本壓電式薄膜泵腔體乃由CNC加工鋁材製成,該內部尺寸為45 mm × 28 mm × 4 mm。 本研究發現該泵之性能與其之閥體、主腔室、輸入電壓及操作頻率有關,因此可藉由以上參數之設計來改良該泵之流量與揚程。當輸入電壓為±50 V時,該改良後之流量可達4.4 ml/s, 而最大之揚程則達 8.33 kPa。另外,本文亦進行該泵應用之研究,開發出結合冷卻水套與薄膜泵的新型散熱式微泵(OAPCP-micropump),該泵腔室內設有鰭片,因此可以直接接在發熱源上,並藉由本微泵中震盪的流體衝擊腔室底部的鰭片,可以大幅增加熱傳之效能,故而可將之用來改善筆記型電腦的散熱性能與增進電子產品的可靠度。在研究中,發現腔體中的鰭片形狀與數量會影響腔體的流場與壓降,進而導致熱式微泵的性能發生改變。當鰭片高度為1.25(mm)時,該泵可以維持原有之流量。此外,在研究中發現,散熱式微泵之流量不因鰭片數量由6片增加至12片而有明顯衰減。在經改善後,散熱式微泵的最大流量為4.1 ml/s,而最大揚程則達9.8 kPa。當該微泵置於45W熱源之開放式與封閉式散熱系統中時,其元件熱阻分別為 0.15 oC/W 及0.35 oC/W。本封閉之系統在輸入熱源為30 W與45 W的狀態下,系統總熱阻皆可維持在0.97 oC/W之穩定狀態。
A new type of micropump, a one side actuating diaphragm micropump, has been successfully developed to actuate liquid by the vibration of a diaphragm. The micropump with two valves is fabricated in an aluminum case by using highly accurate CNC machine, and the cross-section dimension is 28 mm × 5 mm. Both valves and diaphragm are manufactured from PDMS. This Thesis indicates that the performance of the micropump is affected by the design of check valves, pump chambers, input voltages and frequencies. The improved design shows that the maximum flow rate is 4.4 ml/s and the maximum pump head is 8.33 kPa under ±50 V. In addition, the application of one-side actuating piezoelectric micropump (OAPCP-micropump), which is directly combined with a 45mm
口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
TABLE OF CONTENTS V
LIST OF FIGURES VIII
LIST OF TABLES XIII
LIST OF SYMBOLS XIV
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.1.1 Actuation of the micropumps 2
1.1.2 Valves in micropumps 5
1.1.3 Valves in the one-side actuating micropump 10
1.3 Motivation 12
1.4 Thesis Overview 14
CHAPTER 2 DEVELOPMENT OF A ONE-SIDE ACTUATING MICROPUMP 16
2.1 Ideal Cycle of the One-Side Actuation 17
2.2 Analysis of One-side Actuating 20
2.3 Analysis of the Valve 27
2.4 Analysis of the Flow Field in the Pump Chamber 32
CHAPTER 3 EXPERIMENTAL SET-UP 35
3.1 Fabrication of the One-Side Actuating Micropump 36
3.2 Investigation of the Displacement of the Actuating Part 40
3.2.1 Measuring the displacement of the piezoelectric device 40
3.2.2 Measurement of the flow resistance for the damping coefficient 41
3.3 Experimental Setups for One-Side Actuating Micropumps 42
3.3.1 The performance testing of a single micropump 43
3.3.2 Performance testing of the one-side actuating micropump in an open system 45
3.3.3 Thermal performance in a circulating system 47
3.4 The Experimental Setup of an OAPCP-micropump 48
3.4.1 Performance testing of the OAPCP-micropump in an open system 48
CHAPTER 4 SIMULATION MODEL 52
4.1 3-D Model for the One-side Actuating Micropump 53
4.2 Boundary Conditions of the Simulation Model 55
4.2.1 Assumptions of the Simulation Model 56
4.2.2 Actuating part 58
4.3 Mesh Dependency 63
CHAPTER 5 ANALYSIS OF PUMP PERFORMANCE 64
5.1 Original Design of a One-Side Actuating Micropump 65
5.1.1 Effect of the diaphragm 65
5.1.2 Effect of frequencies 66
5.2 Improved Design on Pump Chambers 70
5.2.1 Optimal length of pump chambers 70
5.2.2 Simulation study on a one-side actuating micropump 72
5.2.2 Effect of the equivalent mass 75
5.3 Improved Design of Valves 77
5.3.1 Valve vibration in the pump simulation model 77
5.3.1 Valve efficiencies at different frequencies 81
5.3.2 Pump performance with different valves 85
5.4 Pump Performance under Certain Pressure Heads 88
5.5 Pump Performance under Certain Input Voltages 90
5.6 Prediction of Pump Performance in a System 93
5.7 Thermal Performance of a One-Side Actuating Pump in a System 94
5.8 Effect of Cross Section at the Inlet and Outlet 98
5.9 One-Side Actuation Micropump with One Valve 103
5.10 Valveless One-Side Actuation Micropump 104
5.10.1 Numerical study of a valveless one-side actuation micropump 104
5.10.2 Flow rate of a valveless one-side actuation micropump 105
5.11 Pump Efficiency 106
5.12 Direction of the Inlet and Outlet 108
CHAPTER 6 PERFORMANCE OF THE OAPCP-MICROPUMP 110
6.1 Material of the Pump Chamber 113
6.2 Effect of the Fin Height on the Flow Rate 114
6.3 Effect of the Number of Fins and of the Valve on the Flow Rate 116
6.4 Oscillation Flow Effect on Thermal Performance 117
6.5 Optimum Performance of the OAPCP-Micropump and the Flow Rate 119
6.6 Pump Heads 121
6.7 Comparison of the Micropumps in the Cooling Systems 122
CHAPTER 7 CONCLUSIONS 125
REFERENCE 128
APPENDIX A 132
APPENDIX B 133
APPENDIX C 138
[1]H. K. Ma, B. R. Hou, H. Y. Wu, C. Y. Lin, J. J. Gao, M. C. Kou, Development and application of a diaphragm micro-pump with piezoelectric device, Microsystem Technologies 14 (2008) 1001-1007.
[2]H. K. Ma, B. R. Hou, C. Y. Lin, J. J. Gao, The improved performance of one-side actuating diaphragm micropump for a liquid cooling system, International Communications in Heat and Mass Transfer 35 (2008) 957-966.
[3]N. T. Nguyen, T. Q. Truong, A fully polymeric micropump with piezoelectric actuator, Sensors and Actuators B 97 (2004) 137-143.
[4]S. Böhm, W. Olthuis, P. Bergveld, A plastic micropump constructed with conventional techniques and materials, Sensors and Actuators A 77 (1999) 223-228.
[5]C. Yamahata, F. Lacharme, Y. Burri, M. A.M. Gijs, A ball valve micropump in glass fabricated by powder blasting, Sensors and Actuators B 110 (2005) 1-7.
[6]M. Matteucci, M. Casella, M. Bedoni, E. Donetti, M. Fanetti, F. D. Angelis, A compact and disposable transdermal drug delivery system, Microelectronic Engineering 85 (2008) 1066-1073.
[7]A. Hatch, A. E. Kamholz, G. Holman, P. Yager, K. F. Böhringer, A Ferrofluidic Magnetic Micropump, Journal of Microelectromechanical Systems 10 (2001) 215-221.
[8]Q. Gong, Z. Zhou, Y. Yang, X. Wang, Design, optimization and simulation on microelectromagnetic pump, Sensors and Actuators A 83 (2000) 200-207.
[9]E. Stemme, G. Stemme, A valveless diffuser /nozzle-based fluid pump, Sensors and Actuators A 39 (1993) 159-167.
[10]A. Olsson, G. Stemme, E. Stemme, Diffuser-element design investigation for valve-less pumps, Sensors and Actuators A 57 (1996) 137-143.
[11]B. Wang, X. Chu, E. Li, L. Li, Simulations and analysis of a piezoelectric micropump, Ultrasonics 44 (2006) 643-646.
[12]J. Kan, K. Tang, G. Liu, G. Zhu, C. Shao, Development of serial-connection piezoelectric pumps, Sensors and Actuators A 144 (2008) 321-327.
[13]W. L. Benard, H. Kahn, A. H. Heuer, M. A. Huff, Thin-film shape-memory alloy actuated micropumps, Journal of Microelectromechanical Systems 7 (1998) 245-251.
[14]J. Zou, X. Y. Ye, Z. Y. Zhou, Y. Yang, A noval thermally-actauted silicon micropump, In the proceedings of the IEEE 1997 International Symposium on Micromechatronics and Human Science (1997) 231-234.
[15]O. Francais, I. Dufour, E. Sarraute, Analytical static modelling and optimization of electrostatic micropumps, Journal of Micromechanics and Microengineering 7 (1997) 183-185.
[16]A. Wego, H. Glock, L. Pagel, S. Richter, Investigations on thermo-pneumatic volume actuators based on PCB technology, Sensors and Actuators A 93 (2001) 95-102.
[17]J. C. Yoo, Y. J. Choi, C. J. Kang, Y. S. Kim, A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and Paraffin-actuated microvalve Sensors and Actuators A 139 (2007) 216-220.
[18]Peter Woias, Micropumps - past, progress and future prospects, Sensors and Actuators B 105 (2005) 28-38.
[19]S. Shoji, M. Esashi, Microflow devices and systems, Journal of Micromechanics and Microengineering 4 (1994) 157 – 171.
[20]R. Sattler, P. Voigt, H. Pradel, G. Wachutka, Innovative design and modelling of a micromechanical relay with electrostatic actuation, Journal of Micromechanics and Microengineering 11 (2001) 428-433.
[21]T. Honda, J. Yamasaki, K. I. Arai, Fabrication and testing of a small pump composed of a magnet and an elastic plate, IEEE Transactions on Magnetics 34 (1998) 2102-2104.
[22]F. C. M. van de Pol, H. T. G. van Lintel, M. Elwenspoek, J. H. J. Fluitman, A thermopneumatic micropump based on microengineering techniques, Sensors and Actuators A A21-A23 (1990) 198-202
[23]A. Olsson, G. Stemme, E. Stemme, Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, Sensors and Actuators A 84 ( 2000) 165-175.
[24]N. Tesla, US patent no. 1329559, February 3, 1920.
[25]F. K. Forster, R. L. Bardell, M. A. Afromowitz, N. R. Sharma, A. Blanchard, Design, fabrication and testing of fixed-valve micro-pumps, In Proceedings of the ASME Fluids Engineering Division /ASME IMECE, 234 (1995) 39-54.
[26]L. S. Jang, C. J. Morris, N. R. Sharma, R. L. Bardell, F. K. Forster, Transport of particle-laden fluids through fixed-valve micropumps, ASME Microelectromechanical Systems (MEMS), 1 (1999) 503-509.
[27]T. Q. Truong, N. T. Nguyen, Simulation and optimization of Tesla valves, Nanotech 1 (2003) 178-181.
[28]M. Shen, C. Yamahata, M. A.M. Gijs, Miniaturized PMMA ball-valve micropump with cylindrical electromagnetic actuator, Microelectronic Engineering 85 (2008) 1104-1107.
[29]W. J. Spencer, W. T. Corbett, L. R. Dominguez, B. D. Shafer, An electronically controlled piezoelectric insulin pump and valves, IEEE Trans. Sonics Ultrason. SU-25 (1978) 153-156.
[30]A. Geipel, F. Goldschmidtböing, A. Doll, P. Jantscheff, N. Esser, U. Massing, P. Woias, An implantable active microport based on a self-priming high-performance two-stage micropump, Sensors and Actuators A 145-146 (2008) 414-422.
[31]S. Guo, K. Sugimoto, T. Fukuda, K. Oguro, A new type of capsule medical micropump, In Proceedings of the 1999 IEEE/ASME International Conference on Advance Intelligent Mechatronics (1999) 55-60.
[32]K. L. McElhaney, An analysis of check valve performance characteristics based on valve design, Nuclear Engineering and Design 197 (2000) 169-182.
[33]N. T. Nguyen, T. Q. Truong, A fully polymeric micropump with piezoelectric actuator, Sensors and Actuators B 97 (2004) 137-143.
[34]M. M. Teymoori, E. Abbaspour-Sani, Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications, Sensors and Actuators A 117 (2005) 222-229.
[35]A. Nisar, N. Afzulpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications, Sensors and Actuators B 130 (2008) 917-942.
[36]J. Kan, Z. Yang, T. Peng, G. Cheng, B. Wu, Design and test of a high-performance piezoelectric micropump for drug delivery, Sensors and Actuators A 121 (2005) 156-161
[37]J. M. Gere, Mechanics of Materials, fifth ed., Brooks/Cole, Pacific Grove, 2001, pp. 894.
[38]S. S. Rao, Mechanical Vibrations, fourth ed., Pearson Prentice Hall, New Jersey, 2004, pp. 261.
[39]B. R. Munson, D. F. Young, T. H. Okiishi, Fundamentals of Fluid Mechanics, third ed., John Wiley & Sons, New York, 1998, pp. 417.
[40]Li Chih Lin, Numerical Analysis of a New designed Micro-Diaphragm Pump, Master Thesis, National Taiwan University, 2007.
[41]Wen Rui Lin, Development of a Force Sensing Array System and Its Applications in Cell-Mechanics, Master Thesis, National Cheng Kung University, 2004.
[42]http://www.cfdrc.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊