跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭兆呈
研究生(外文):Chao-Cheng Shiau
論文名稱:可撓式熱管之材料與毛細性能分析
論文名稱(外文):The Analysis of Material and Capillary Performance in Flexible Heat Pipe
指導教授:陳希立陳希立引用關係
指導教授(外文):Sih-Li Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:PDMS高分子溝槽板毛細性能濕潤軸長熱傳導係數
外文關鍵詞:PDMSPolymer grooved plateCapillary performanceAxial wetted lengthThermal conductivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
本論文為評估高分子(PDMS)可撓式熱管實作可行性之前期研究,研究重點著重於高分子溝槽板之毛細性能評估與高分子材料之熱傳性能改善,並據此設計對應之實驗。毛細性能實驗分析不同加熱功率、傾斜角度、工作流體與流道形狀對濕潤軸長造成的影響,並以G. P. Peterson所建立之理論模型代數解加以比較,討論其誤差的原因;改善材料熱傳性能實驗則分析不同導熱微粒種類與參雜濃度及材料配置下對混合材料熱傳導係數的影響。
毛細性能實驗結果顯示,濕潤軸長隨加熱功率與傾斜角度之增加而下降,工作流體使用甲醇與流道使用三角形流道時有較佳的毛細性能,且蒸發段濕潤軸長實驗值約為G. P. Peterson代數解之3倍。改善材料熱傳性能實驗結果顯示使用奈米碳管粉末與銅粉末分別可提升PDMS之熱傳導係數5.88倍與4.98倍,而骨架式的材料配置在使用銅質彈簧時可提升PDMS熱傳導係數達16.52倍。
The present thesis is a former research to evaluate the feasibility of fabricating a polymer (PDMS) flexible heat pipe. Present research focuses on the capillary performance evaluation of the polymer grooved plate and the thermal performance improvement of polymer material, corresponding experiment thus established. The capillary performance experiment analyzes the varying of axial wetted length by adjusting input power, inclined angle, working fluid, and the shape of flow channel. Results are compared with the algebraic solution of the model developed by G. P. Peterson. The reason of deviation is discussed. The thermal performance experiment analyzes the varying thermal conductivity of the blend material by adjusting conductive filler type, concentration of conductive filler and the material arrangement.
The results of capillary performance experiment indicate that the axial wetted length decreases with the increase of input power and inclined angle. Choose methanol as working fluid and triangular shape as flow channel exhibit the better capillary performance. The algebraic solution developed by G. P. Peterson is one-third of the experiment result in value. The results of thermal performance experiment indicate that filler using CNT powder and copper powder can improve the thermal conductivity of PDMS 5.88 times and 4.98 times respectively. The idea of framework material arrangement improves the thermal conductivity of PDMS 16.52 times by using copper spring coil.
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 2
1.3.1 微熱管發展起源 3
1.3.2 溝槽式毛細結構內熱傳研究 4
1.3.3 高分子材料熱傳性能增進 5
1.3.4 可撓式熱管的演進 5
第二章 基本理論 10
2.1 PDMS性質簡介 10
2.2 高分子材料熱傳性能增強機制 10
2.3 熱管原理 11
2.3.1 熱管 11
2.3.2 熱管性能極限 13
2.4 蒸發基本理論 14
2.4.1 彎月形薄膜區之相變化現象 14
2.5 微流道壓差理論分析 16
2.5.1 毛細極限 16
2.5.2 微溝槽蒸發流軸向乾涸點模型 21
第三章 研究方法 35
3.1 毛細性能實驗 35
3.1.1 試片製作 35
3.1.2 實驗說明 36
3.1.3 實驗設備 36
3.1.4 實驗參數 37
3.1.5 實驗流程 38
3.2 高分子材料熱傳性能增進 39
3.2.1 試片製作 39
3.2.2 實驗說明 40
3.2.3 實驗設備 41
3.2.4 儀器校正 43
3.2.5 實驗參數 43
3.2.6 實驗流程 44
3.2.7 熱損失分析 45
第四章 結果與討論 57
4.1 毛細性能實驗 57
4.1.1 實驗結果描述 57
4.1.2 實驗觀察描述 58
4.1.3 加熱功率的影響 58
4.1.4 傾斜角度的影響 59
4.1.5 工作流體的影響 59
4.1.6 流道形狀的影響 60
4.1.7 理論模式與實驗模式的比較 60
4.1.8 理論值與實驗值的比較 61
4.2 高分子材料熱傳性能增進 62
4.2.1 實驗結果描述 62
4.2.2 導熱微粒種類的影響 62
4.2.3 導熱微粒參雜濃度的影響 63
4.2.4 管材材料配置的影響 63
第五章 結論與建議 79
5.1 結論 79
5.2 建議 81
參考文獻 83
[1]T. P. Cotter, “Principles and Prospects For Micro Heat Pipes,” in 5th International Heat Pipe Conference, Tsukuba, Ibazaki, Japan, 1984.
[2]B. R. Babin, G. P. Peterson, and D. Wu, “Steady-state modeling and testing of a micro heat pipe,” Journal of Heat Transfer, vol. 112, no. 3, pp. 595-601, 1990.
[3]G. P. Peterson, A. B. Duncan, A. S. Ahmed et al., "Experimental investigation of micro heat pipes in silicon wafers," American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC. pp. 341-348, 1991.
[4]A. B. Duncan, and G. P. Peterson, “Charge optimization for a triangular-shaped etched micro heat pipe,” Journal of Thermophysics and Heat Transfer, vol. 9, no. 2, pp. 365-368, 1995.
[5]G. P. Peterson, and H. B. Ma, "Theoretical analysis of the maximum heat transport in triangular grooves: a study of idealized micro heat pipes," American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD. pp. 185-192, 1995.
[6]P. S. Ayyaswamy, I. Catton, and D. K. Edwards, “CAPILLARY FLOW IN TRIANGULAR GROOVES,” Journal of Applied Mechanics, Transactions ASME, vol. 41 Ser E, no. 2, pp. 332-336, 1974.
[7]X. Xu, and V. P. Carey, “Film evaporation from a micro-grooved surface - An approximate heat transfer model and its comparison with experimental data,” Journal of Thermophysics and Heat Transfer, vol. 4, pp. 512-520, 1990.
[8]G. Stroes, T. Rohloff, and I. Catton, "Experimental study of the capillary forces in rectangular channels vs. triangular channels," American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD. pp. 1-7, 1992.
[9]J. M. Ha, and G. P. Peterson, "Analytical prediction of the axial dryout point for evaporating liquids in triangular microgrooves," American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD. pp. 53-61, 1993.
[10]J. M. Ha, and G. P. Peterson, “Capillary performance of evaporating flow in micro grooves: an analytical approach for very small tilt angles,” Journal of Heat Transfer, vol. 120, no. 2, pp. 452-457, 1998.
[11]H. B. Ma, and G. P. Peterson, “Experimental Investigation of the Maximum Heat Transport in Triangular Grooves,” Journal of Heat Transfer, vol. 118, no. 3, pp. 740-746, 1996.
[12]G. P. Peterson, and J. M. Ha, “Capillary performance of evaporating flow in micro grooves: an approximate analytical approach and experimental investigation,” Journal of Heat Transfer, vol. 120, no. 3, pp. 743-751, 1998.
[13]T. S. Sheu, P. P. Ding, and P. H. Chen, "Numerical and experimental study of capillary forces in trapezoid microgrooves," Proceedings of SPIE - The International Society for Optical Engineering. pp. 295-302, 1999.
[14]T. S. Sheu, P. P. Ding, I. M. Lo et al., “Effect of surface characteristics on capillary flow in triangular microgrooves,” Experimental Thermal and Fluid Science, vol. 22, no. 1-2, pp. 103-110, 2000.
[15]S. Anand, S. De, and S. Dasgupta, “Experimental and theoretical study of axial dryout point for evaporation from V-shapes microgrooves,” International Journal of Heat and Mass Transfer, vol. 45, no. 7, pp. 1535-1543, 2002.
[16]I. Catton, and G. R. Stroes, “A semi-analytical model to predict the capillary limit of heated inclined triangular capillary grooves,” Journal of Heat Transfer, vol. 124, no. 1, pp. 162-168, 2002.
[17]G. R. Stroes, and I. Catton, “Experimental investigation of the capillary performance of triangular versus sinusoidal channels,” Journal of Heat Transfer, vol. 119, no. 4, pp. 851-853, 1997.
[18]Y. Agari, A. Ueda, and S. Nagai, “Thermal Conductivity of a Polymer Composite,” Journal of Applied Polymer Science, vol. 49, no. 9, pp. 1625-1634, 1993.
[19]C.-G. Wu, Y.-C. Liu, and S.-S. Hsu, “Assembly of conducting polymer/metal oxide multilayer in one step,” Synthetic Metals, vol. 102, no. 1 -3 pt 2, pp. 1268-1269, 1999.
[20]N. Gernert, D. Sarraf, and M. Steinberg, "Flexible heat pipe cold plates for aircraft thermal control," SAE Technical Paper Series. pp. 1-9, 1991.
[21]T. Kobayashi, T. Ogushi, S. Haga et al., “Heat transfer performance of a flexible looped heat pipe using R134a as a working fluid: Proposal for a method to predict the maximum heat transfer rate of FLHP,” Heat Transfer - Asian Research, vol. 32, no. 4, pp. 306-318, 2003.
[22]T. Ogushi, A. Yao, J. J. Xu et al., “Heat transport characteristics of flexible looped heat pipe under micro-gravity condition,” Heat Transfer - Asian Research, vol. 32, no. 5, pp. 381-390, 2003.
[23]D. McDaniels, and G. P. Peterson, "Investigation of polymer based micro heat pipes for a flexible spacecraft radiator," American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD. pp. 423-433, 2001.
[24]Y. X. Wang, and G. P. Peterson, “Capillary evaporation in microchanneled polymer films,” Journal of Thermophysics and Heat Transfer, vol. 17, no. 3, pp. 354-359, 2003.
[25]"Intel Developer Forum 2004," http://www.hexus.net.
[26]"Thermal management for Intel® Core™2 Extreme mobile processors," http://www.intel.com/support/processors/mobile/core2extreme/sb/CS-028752.htm.
[27]G. P. Peterson, An Introduction to Heat Pipes: Modeling, Testing, and Applications: John Wiley & Sons, Inc., 1994.
[28]K. T. Feldman, Analysis and Design of Heat Pipes, Albuquerque, New Mexico: Bureau of Engineering Research, University of New Mexico, 1970.
[29]H. B. Ma, and G. P. Peterson, “Temperature variation and heat transfer in triangular grooves with an evaporating film,” Journal of Thermophysics and Heat Transfer, vol. 11, no. 1, pp. 90-97, 1997.
[30]S. W. Chi, Heat Pipe Theory and Practice, New York: McGraw-Hill, 1976.
[31]J. E. Mark, Polymer Data Handbook, New York: Oxford University Press, 1999.
[32]"PConline," http://www.pconline.com.cn/.
[33]Y. A. Cengel, Heat Transfer: A Practical Approach, 2 ed.: McGraw-Hill, 2004.
[34]D. R. Lide, CRC Handbook of Chemistry and Physics, 87th Edition: CRC Press Inc.
[35]E. s. Edge. "Properties of Metals - Thermal," http://www.engineersedge.com/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top