跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 17:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宗哲
研究生(外文):Tsung-Cho Wu
論文名稱:高效率合成超長奈米碳管叢與扭轉機電性質探討
論文名稱(外文):High efficiency synthesis of ultralong multi-walled carbon nanotubes forest and its electro-mechanical behavior under torsion
指導教授:張所鋐
指導教授(外文):Shuo-Hung Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:奈米碳管叢化學氣相沉積法成長效率扭轉機械性質電阻率臨界剪力強度挫曲
外文關鍵詞:carbon nanotube forests (or turf)chemical vapor deposition (CVD)growth efficiencytorsionmechanical propertieselectrical resistivitycritical shear strengthbuckle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討多壁奈米碳管叢合成過程中,可能影響成長效率之因素,之後利用新發展的合成方法作大長寬比之奈米碳管叢成長後,對其扭轉時的機械性質與機電反應作相關的研究與討論。本研究首先自行組裝可個別控制溫度之三段溫度式化學氣相沉積系統,以蒸鍍薄膜之方式備製合成奈米碳管叢時所需的催化劑,並固定三段溫度式化學氣相沉積系統之高溫爐內的溫度梯度,藉由控制催化劑膜厚、碳源氣體(C2H4)流率與合成時間,最終可獲得超長多壁奈米碳管叢。其結果顯示三段溫度式化學氣相沉積系統內的溫度變化,確實可維持催化劑之使用壽命並且增加成長效率。取得成長時變化參數之最佳化數值後,三段溫度式化學氣相沉積法可在60分鐘內成長高達4.27釐米之多壁奈米碳管叢,利用無因次參數「奈米碳管叢合成率」客觀地與其他文獻作比較後可發現,三段溫度式化學氣相沉積法之「奈米碳管叢合成率」為單段溫度式化學氣相沉積法的712倍,且碳源氣體之使用流率僅為單段溫度式化學氣相沉積法之4 %。
利用黃光微影製程在二氧化矽基材上定義成長奈米碳管之位置與形狀,配合三段溫度式化學氣相沉積系統,可成功合成大長寬比之奈米碳管叢,接著使用自行設計之扭轉量測機構,可對圓柱狀之奈米碳管叢施予扭矩,並同時可量測其機電反應與扭轉角度。施加扭矩後可在奈米碳管叢表面產生皺折,過程中奈米碳管叢整體的電阻值會隨剪應變增加而微幅上升,當扭轉角度超過80°後之電阻值則會快速地增加,經由實驗結果可推測奈米碳管叢可承受較大的剪應變量,且扭轉過程中,奈米碳管叢內部結構會歷經剪應變、微幅斷裂與大量的破壞。臨界彎曲扭轉角度總是在電阻改變量超過5 %之角度後才發生,因此可由電阻改變量來預測奈米碳管叢之挫曲時間、臨界挫曲扭矩與臨界挫曲角度。與單根奈米碳管作比較時,奈米碳管叢擁有相當低的臨界剪力強度,其值僅有數個MPa左右。
This dissertation reports on the effect factors during synthesis of multi-walled carbon nanotubes (MW-CNTs) forest. Utilizing this novel method to synthesize high aspect ratio carbon nanotubes forest, electro-mechanical behaviors when a torque is applied were reported and discussed. A self-assembled apparatus with three individually controlled heating zones constitute a three-zone temperature chemical vapor deposition (TZT-CVD) system. Catalyst film was deposited by electron beam evaporator and temperature difference was fixed in the TZT-CVD furnace. By controlling the catalyst film thickness, carbon source (ethylene) flow rate and synthesis time, ultralong MW-CNTs forest can be obtained. The results reveal that the effect of temperature difference in the TZT-CVD is to sustain the lifetime of the catalyst and hence increase the growth efficiency. By optimizing the growth variables, TZT-CVD produced MW-CNTs forest with a height up to 4.27 mm in 60 min. Compare with other references objectively, the CNT synthesis ratio, an ultimate figure of merit, is 712 times and the carbon source consumption is 4 % compared to that of single-zone temperature CVD.
The position and shape was first defined by photolithography on silicon oxide substrate. High aspect ratio CNT turfs can be successfully obtained by a TZT-CVD. A special apparatus was designed to apply a torque to the cylindrical CNT turfs. The apparatus allows simultaneously measuring the electrical resistance and the corresponding torsional angle of the turf. Applied torque will lead to wrinkles on the exterior of CNT turfs. The electrical resistance will rise with the increasing shear strain and will rise suddenly at torsion angle of 80°. It indicates that the structure of CNT turf can sustain large shear strain and go through shear strain, slightly rupture and large break during the torsional process. The critical buckling angle always occurred after the angle at the resistance change rate is over 5 %. From the resistance change rate, the buckling time, critical buckling torque, and critical buckling angle can be forecast. Compared with individual carbon nanotube, the CNT turf possesses relatively low critical shear strength of several MPa only.
口試委員會審定書
誌謝
中文摘要................................................i
英文摘要....................................................iii
目錄....................................................v
圖目錄...............................................viii
表目錄................................................xii
第1章 緒論..............................................1
1.1 研究背景介紹........................................1
1.2 奈米碳管之組成結構與物理特性........................6
1.3 研究動機與目的......................................9
1.4 本論文架構.........................................10
第2章 文獻回顧.........................................13
2.1 奈米碳管與奈米碳管叢合成方法與發展簡介.............13
2.1.1 奈米碳管與奈米碳管叢之合成方法...................13
2.1.2 奈米碳管叢成長之發展簡介.........................19
2.2 奈米碳管叢機械性質量測介紹.........................22
第3章 奈米碳管叢合成原理與扭轉量測理論.................29
3.1 化學氣相沉積法合成奈米碳管叢之成長型態與基本原理...29
3.1.1 化學氣相沉積法合成奈米碳管之成長型態.............29
3.1.2 化學氣相沉積法合成奈米碳管叢原理.................33
3.2 奈米碳管叢扭轉量測理論.............................37
3.2.1 彈性應變範圍內扭轉時之剪應力.....................37
3.2.2 大塑性應變扭轉時之剪應力.........................40
第4章 實驗設計及流程...................................43
4.1 合成超長奈米碳管叢.................................43
4.1.1 實驗設備.........................................43
4.1.2 實驗流程.........................................45
4.2 超長奈米碳管叢之扭轉機電性質量測...................56
4.2.1 實驗設備.........................................56
4.2.2 實驗流程.........................................58
第5章 實驗結果與討論...................................63
5.1 超長奈米碳管叢合成方法.............................63
5.1.1 碳源氣體乙烯流量對成長之影響.....................64
5.1.2 鐵薄膜厚度對成長之影響...........................71
5.1.3 成長時間與奈米碳管叢合成高度之關係...............73
5.1.4 基板效應對奈米碳管叢合成的影響...................79
5.1.5 拉曼光譜(Raman spectra)分析......................79
5.2 超長奈米碳管叢扭轉機電特性.........................81
5.2.1 奈米碳管叢扭轉之電性量測.........................81
5.2.2 奈米碳管叢扭轉之機械性質討論.....................83
5.2.3 奈米碳管叢機電特性之比較.........................88
第6章 結論與建議.......................................89
6.1 研究成果總結.......................................91
6.2 未來展望...........................................93
參考文獻...............................................95
作者簡介與著作........................................107
[1] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C60:Buckminsterfullerene,” Nature, Vol. 318, pp. 162-163, 1985
[2] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991
[3] S. Iijima, and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605, 1993
[4] D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, Vol. 363, pp. 605-607, 1993
[5] R. Saito, G. Dresslhaus, and M. Dresswlhau, “Physical properties of carbon nanotube,” Imperial College Press, 1998
[6] J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are fullerene tubules metallic,” Physical Review Letters, Vol. 68, No. 5, pp. 631-634, 1992
[7] N. Hamada, S. Sawada, and A. Oshiyama, “New one-dimensional conductors:graphitic microtubules,” Physical Review Letters, Vol. 68, No. 10, pp. 1579-1581, 1992
[8] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes:Field-emission from an atomic wire,” Science, Vol. 269, Issue 5230, pp. 1550-1553, 1995
[9] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, Vol. 273, Issue 5274, pp. 483-487, 1996
[10] H. J. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chemical Physics Letters, Vol. 260, Issue 3-4, pp. 471-475, 1996
[11] S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, “Individual single-wall carbon nanotubes as quantum wires,” Nature, Vol. 386, Issue 6624, pp. 474-477, 1997
[12] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes,” Nature, Vol. 386, Issue 6623, pp. 377-379, 1997
[13] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, Vol. 282, Issue 5391, pp. 1105-1107, 1998
[14] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. J. Dai, “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, Vol. 395, Issue 6705, pp. 878-881, 1998
[15] B. W. Smith, M. Monthioux, and D. E. Luzzi, “Encapsulated C60 in carbon nanotubes,” Nature, Vol. 396, Issue 6709, pp. 323-324, 1998
[16] A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai, “Large scale CVD synthesis of single-walled carbon nanotubes,” Journal of Physical Chemistry B, Vol. 103, Issue 31, pp. 6484-6492, 1999
[17] S. Berber, Y. K. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters, Vol. 84, Issue 20, pp. 4613-4616, 2000
[18] B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, “Macroscopic fibers and ribbons of oriented carbon nanotubes,” Science, Vol.290, Issue 5495, pp. 1331-1334, 2000
[19] P. C. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotubes circuits using electrical breakdown,” Science, Vol. 292, Issue 5517, pp. 706-709, 2001
[20] M. Kociak, A. Y. Kasumov, S. Gueron, B. Reulet, I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, L. Vaccarini, and H. Bouchiat, “Superconductivity in ropes of single-walled carbon nanotubes,” Physical Review Letters, Vol. 86, Issue 11, pp. 2416-2419, 2001
[21] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, “Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition,” Chemical Physics Letters, Vol. 381, Issue 3-4, pp. 422-426, 2003
[22] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, “Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes,” Science, Vol. 306, pp. 1362-1364, 2004
[23] J. C. Meyer, M. Paillet, and S. Roth, “Single-molecule torsional pendulum,” Science, Vol. 309, Issue 5740, pp. 1539-1541, 2005
[24] J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus, and Z. F. Ren, “Superplastic carbon nanotubes – Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes,” Nature, Vol. 439, Issue 7074, p. 281, 2006
[25] A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, and O. Bakajin, “Nanofluidics in carbon nanotubes,” Nano Today, Vol. 2, Issue 6, pp. 22-29, 2007
[26] E. Bichoutskaia, A. M. Popov, and Y. E. Lozovik, “Nanotube-based data storage devices,” Materials Today, Vol. 11, Issue 6, pp. 38-43, 2008
[27] Y. Q. Xu, A. Barnard, P. L. McEuen, “Bending and twisting of suspended single-walled carbon nanotubes in solution,” Nano Letters, Vol. 9, Issue 4, pp. 1609-1614, 2009
[28] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes,” Nature, Vol. 391, Issue 6662, pp. 59-62, 1998
[29] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules,” Applied Physics Letters, Vol. 60, Issue 18, pp. 2204-2206, 1992
[30] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science, Vol. 275, Issue 5297, pp. 187-191, 1997
[31] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, Vol. 103, Issue 1-3, pp. 2555-2558, 1999
[32] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, Vol. 33, No. 7, pp. 883-891, 1995
[33] T. C. Wu, and S. H. Chang, “Temperature enhanced growth of ultralong multi-walled carbon nanotubes forest,” Current Applied Physics, Vol. 9, Issue 5, pp. 1117-1121, 2009
[34] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,” Nature, Vol. 381, Issue 6584, pp. 678-680, 1996
[35] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, “Carbon nanotube quantum resistors,” Science, Vol. 280, Issue 5370, pp. 1744-1746, 1998
[36] S. Farhat, M. L. de La Chapelle, A. Loiseau, C. D. Scott, S. Lefrant, C. Journet, and P. Bernier, “Diameter control of single-walled carbon nanotubes using argon-helium mixture gases,” Journal of Chemical Physics, Vol. 115, Issue 14, pp. 6752-6759, 2001
[37] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, “Carbon nanotube growth by PECVD: a review,” Plasma Sources Science and Technology, Vol. 12, Issue 2, pp. 205-216, 2003
[38] Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, and H. J. Dai, “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method,” Nano Letters, Vol. 4, Issue 2, pp. 317-321, 2004
[39] S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, “Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates,” Applied Physics Letters, Vol. 83, Issue 22, pp. 4661-4663, 2003
[40] R. L. Vander Wal, T. M. Ticich, and V. E. Curtis, “Diffusion flame synthesis of single-walled carbon nanotubes,” Chemical Physics Letters, Vol. 323, Issue 3-4, pp. 217-223, 2000
[41] M. J. Height, J. B. Howard, J. W. Tester, and J. B. V. Sande, “Flame synthesis of single-walled carbon nanotubes,” Carbon, Vol. 43, Issue 11, pp. 2295-2307, 2004
[42] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chemical Physics Letters, Vol. 360, Issue 3-4, pp. 229-234, 2002
[43] Y. Murakami, S. Chiashi, Y. Miyauchi, M. H. Hu, M. Ogura, T. Okubo, and S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy,” Chemical Physics Letters, Vol. 385, Issue 3-4, pp. 298-303, 2004
[44] L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, and Y. T. Zhu, “Ultralong single-wall carbon nanotube,” Nature Materials, Vol. 3, Issue 10, pp. 673-676, 2004
[45] S. M. Huang, X. Y. Cai, and J. Liu, “Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates,” Journal of the American Chemical Society, Vol. 125, Issue 19, pp. 5636-5637, 2003
[46] M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A. C. Ferrari, A. M. Blackburn, K. Y. Wang, and J. Robertson, “Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures,” Nano Letters, Vol. 6, No. 6, pp. 1107-1112, 2006
[47] D. Laplaze, P. Bernier, L. Barbedette, J. M. Lambert, G. Flamant, M. Lebrun, A. Brunelle, and S. Dellanegra, “Production of fullerenes from solar-energy – the Odeillo experiment,” Comptes Rendus De L Academie Des Sciences Serie Li, Vol. 318, Issue 6, pp. 733-738, 1994
[48] C. Journet, and P. Bernier, “Production of carbon nanotubes,” Applied Physics A-Materials Science & Processing, Vol. 67, Issue 1, pp. 1-9, 1998
[49] M. Zhang, S. L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science, Vol. 309, Issue 5738, pp. 1215-1219, 2005
[50] S. S. Fan, M. G, Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, Vol. 283, Issue 5401, pp. 512-514, 1999
[51] A. Y. Cao, H. W. Zhu, X. F. Zhang, X. S. Li, D. B. Ruan, C. L. Xu, B. Q. Wei, J. Liang, and D. H. Wu, “Hydrogen storage of dense-aligned carbon nanotubes,” Chemical Physics Letters, Vol. 342, Issue 5-6, pp. 510-514, 2001
[52] W. L. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, “Large-scale synthesis of aligned carbon nanotubes,” Science, Vol. 274, pp. 1701-1703, 1996
[53] X. F. Zhang, A. Y. Cao, B. Q. Wei, Y. H. Li, J. Q. Wei, C. L. Xu, and D. H. Wu, “Rapid growth of well-aligned carbon nanotube arrays,” Chemical Physics Letters, Vol. 362, Issue 3-4, pp. 285-290, 2002
[54] Y. Wang, F. Wei, G. H. Luo, G. Yu, and G. S. Gu, “The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor,” Chemical Physics Letters, Vol. 364, Issue 5-6, pp. 568-572, 2002
[55] D. N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, and S. Iijima, “Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis,” Physical Review Letters, Vol. 95, Issue 5, 056104, 2005
[56] S. P. Patole, P. S. Alegaonkar, H. C. Lee, and J. B. Yoo, “Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes,” Carbon, Vol. 46, Issue 14, pp. 1987-1993, 2008
[57] M. Kumar, and Y. Ando, “A simple method of producing aligned carbon nanotubes from an unconventional precursor - Camphor,” Chemical Physics Letters, Vol. 374, Issue 5-6, pp. 521-526, 2003
[58] S. Musso, S. Porro, M. Rovere, A. Chiodoni, and A. Taghaferro, “Physical and mechanical properties of thick self-standing layers of multiwall carbon nanotubes,” Diamond and Related Materials, Vol. 16, Issue 4-7, pp. 1174-1178, 2007
[59] P. A. Williams, S. J. Papadakis, A. M. Patel, M. R. Falvo, S. Washburn, and R. Superfine, “Torsional response and stiffening of individual multiwalled carbon nanotubes,” Physical Review Letters, Vol. 89, No. 25, 255502, 2002
[60] A. R. Hall, L. An, J. Liu, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, “Experimental measurement of single-wall carbon nanotube torsional properties,” Physical Review Letters, Vol. 96, No. 25, 256102, 2006
[61] Y. Wang, X. X. Wang, and X. G. Ni, “Atomistic simulation of the torsion deformation of carbon nanotubes,” Modelling and Simulation in Materials Science and Engineering, Vol. 12, Issue 6, pp. 1009-1107, 2004
[62] B. W. Jeong, J. K. Lim, and S. B. Sinnott, “Torsional stiffening of carbon nanotube systems,” Applied Physics Letters, Vol. 91, Issue 9, 093102, 2007
[63] B. W. Jeong, J. K. Lim, and S. B. Sinnott, “Multiscale-failure criteria of carbon nanotube systems under biaxial tension-torsion,” Nanotechnology, Vol. 18, Issue 48, 485715, 2007
[64] S. J. Papadakis, A. R. Hall, P. A. Williams, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, “Resonant oscillators with carbon-nanotube torsion springs,” Physical Review Letters, Vol. 93, No. 14, 146101, 2004
[65] J. Zou, X. Huang, M. Arroyo, and S. L. Zhang, “Effective coarse-grained simulations of super-thick multi-walled carbon nanotubes under torsion,” Journal of Applied Physics, Vol. 105, No. 3, 033516, 2009
[66] A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, “Rotational actuators based on carbon nanotubes,” Nature, Vol. 424, Issue 6947, pp. 408-410, 2003
[67] V. P. Veedu, A. Y. Cao, X. S. Li, K. G. Ma, C. Soldano, S. Kar, P. M. Ajayan, and M. N. Ghasemi-Nejhad, “Multifunctional composites using reinforced laminae with carbon-nanotube forests,” Nature Materials, Vol. 5, Issue 6, pp. 457-462, 2006
[68] A. A. Zbib, S. D. Mesarovic, E. T. Lilleodden, D. McClain, J. Jiao, and D. F. Bahr, “The coordinated buckling of carbon nanotube turfs under uniform compression,” Nanotechnology, Vol. 19, Issue 17, 175704, 2008
[69] C. P. Deck, J. Flowers, G. S. B. McKee, and K. Vecchio, “Mechanical behavior of ultralong multiwalled carbon nanotube mats,” Journal of Applied Physics, Vol. 101, Issue 2, 023512, 2007
[70] H. J. Qi, K. B. K. Teo, K. K. S. Lau, M. C. Boyce, W. I. Milne, J. Robertson, and K. K. Gleason, “Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation,” Journal of the Mechanics and Physics of Solids, Vol. 51, Issue 11-12, pp. 2213-2237, 2003
[71] K. M. Liew, C. H. Wong, and M. J. Tan, “Twisting effects of carbon nanotube bundles subjected to axial compression and tension,” Journal of Applied Physics, Vol. 99, Issue 11, 114312, 2006
[72] B. W. Jeong, J. K. Lim, and S. B. Sinnott, “Elastic torsional responses of carbon nanotube systems,” Journal of Applied Physics, Vol. 101, Issue 8, pp 084309, 2007
[73] M. Endo, A. Oberlin, and T. Koyama, “High-resolution electron-microscopy of graphitizable carbon-fiber prepared by benzene decomposition,” Japanese Journal of Applied Physics, Vol. 16, Issue 9, pp. 1519-1523, 1977
[74] R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite, “Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene,” Journal of Catalysis, Vol. 30, Issue 1, pp. 86-95, 1973
[75] R. Seidel, G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau, and F. Kreupl, “Chemical vapor deposition growth of single-walled carbon nanotubes at 600°C and a simple growth model,” Journal of Physical Chemistry B, Vol. 108, Issue 6, pp. 1888-1893, 2004
[76] A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L. Simpson, “Transition between ‘base’ and ‘tip’ carbon nanofiber growth modes,” Chemical Physics Letters, Vol. 356, Issue 5-6, pp. 527-533, 2002
[77] O. A. Louchev, Y. Sato, and H. Kanda, “Growth mechanism of carbon nanotube forests by chemical vapor deposition,” Applied Physics Letters, Vol. 80, No. 15, pp. 2752-2754, 2002
[78] M. J. Yacaman, M. M. Yoshida, and L. Rendon, “Catalytic growth of carbon microtubules with fullerene structure,” Applied Physics Letters, Vol. 62, Issue 2, pp. 202-204, 1993
[79] M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W. Kroto, “The production and structure of pyrolytic carbon nanotubes,” Journal of Physics and Chemistry of Solids, Vol. 54, Issue 12, pp. 1841-1848, 1993
[80] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E),” Applied Physics Letters, Vol. 4, Issue 5, pp. 89-&, 1964
[81] William B. Bickford, Mechanics of solids: concepts and applications, Richard D. IRWIN, 1993
[82] S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, “Atomic-scale imaging of carbon nanofibre growth,” Nature, Vol. 427, Issue 6973, pp.426-429, 2004
[83] S. S. Fan, W. J. Liang, H. Y. Dang, N. Franklin, T. Tombler, M. Chapline, and H. J. Dai, “Carbon nanotube arrays on silicon substrates and their possible application,” Physica E, Vol. 8, pp. 179-183, 2000
[84] W. Kim, H. C. Choi, M. Shim, Y. M. Li, D. W. Wang, and H. J. Dai, “Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes,” Nano Letters, Vol. 2, No. 7, pp. 703-708, 2002
[85] E. Terrado, I. Tacchini, A. M. Benito, W. K. Maser, and M. T. Martinez, “Optimizing catalyst nanoparticle distribution to produce densely-packed carbon nanotube growth,” Carbon, Vol. 47, Issue 8, pp. 1989-2001, 2009
[86] Y. T. Lee, N. S. Kim, J. Park, J. B. Han, Y. S. Choi, H. Ryu, and H. J. Lee, “Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000°C,” Chemical Physics Letters, Vol. 372, pp. 853-859, 2003
[87] K. E. Kim, K. J. Kim, W. S. Jung, S. Y. Bae, J. Park, J. Choi, and J. Choo, “Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene,” Chemical Physics Letters, Vol. 401, pp. 459-464, 2005
[88] S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, L. J. Pan, and Y. Nakayama, “Growth of super long aligned brush-like carbon nanotubes,” Japanese Journal of Applied Physics, Vol. 45, No. 28, pp. L720-L722, 2006
[89] S. M. Huang, M. Woodson, R. Smalley, and J. Liu, “Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process,” Nano Letters, Vol. 4, No. 6, pp. 1025-1028, 2004
[90] Y. J. Jung. B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns,” Nano Letters, Vol. 3, No. 4, pp. 561-564, 2003
[91] R. Xiang, G. H. Luo, Z. Yang, Q. Zhang, W. Z. Qian, and F. Wei, “ Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition,” Nanotechnology, 18, 415703, 2007
[92] J. Cao, Q. Wang, and H. J. Dai, “Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching,” Physical Review Letters, Vol. 90, No. 15, 157601, 2003
[93] L. Bokobza, and C. Belin, “Effect of strain on the properties of a styrene-butadiene rubber filled with multiwall carbon nanotubes,” Journal of Applied Polymer Science, Vol. 105, pp. 2054-2061, 2007
[94] H. S. Jang, S. H. Kwon, Y. H. Lee, U. B. Baek, J. S. Park, A. K. Kim, and S. H. Nahm, “In-situ resistance measurements during tensile test of carbon nanotube using nano-manipulator,” SICE-ICASE International Joint Conference, Vols. 1-13, pp. 4881-4884, 2006
[95] L. Zalamea, H. Kim, and R. B. Pipes, “Stress transfer in multi-walled carbon nanotubes,” Composites Science and Technology, Vol. 67, Issue 15-16, pp. 3425-3433, 2007
[96] A. Kis, G. Csanyi, J. P. Salvetat, T. N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger, and L. Forro, “Reinforcement of single-walled carbon nanotube bundles by intertube bridging,” Nature Materials, Vol. 3, Issue 3, pp. 153-157, 2004
[97] C. M. McCarter, R. F. Richards, S. D. Mesarovic, C. D. Richards, D. F. Bahr, D. McClain, and J. Jiao, “Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf,” Journal of Materials Science, Vol. 41, Issue 23, pp. 7872-7878, 2006
[98] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro, “Elastic and shear moduli of single-walled carbon nanotube ropes,” Physical Review Letters, Vol. 82, Issue 5, pp. 944-947, 1999
[99] R. Jin, Z. X. Zhou, D. Mandrus, I. N. Ivanov, G. Eres, J. Y. Howe, A. A. Puretzky, and D. B. Geohegan, “The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes,” Physica B, Vol. 388, pp. 326-330, 2007
[100] K. Bradley, S. H. Jhi, P. G. Collins, J. Hone, M. L. Cohen, S. G. Louie, and A. Zettl, “Is the intrinsic thermoelectric power of carbon nanotubes positive?,” Physical Review Letters, Vol. 85, No. 20, pp. 4361-4364, 2000
[101] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettle, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science, Vol. 287, pp. 1801-1804, 2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top