|
[1] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C60:Buckminsterfullerene,” Nature, Vol. 318, pp. 162-163, 1985 [2] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991 [3] S. Iijima, and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, Vol. 363, pp. 603-605, 1993 [4] D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, Vol. 363, pp. 605-607, 1993 [5] R. Saito, G. Dresslhaus, and M. Dresswlhau, “Physical properties of carbon nanotube,” Imperial College Press, 1998 [6] J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are fullerene tubules metallic,” Physical Review Letters, Vol. 68, No. 5, pp. 631-634, 1992 [7] N. Hamada, S. Sawada, and A. Oshiyama, “New one-dimensional conductors:graphitic microtubules,” Physical Review Letters, Vol. 68, No. 10, pp. 1579-1581, 1992 [8] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes:Field-emission from an atomic wire,” Science, Vol. 269, Issue 5230, pp. 1550-1553, 1995 [9] A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes,” Science, Vol. 273, Issue 5274, pp. 483-487, 1996 [10] H. J. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chemical Physics Letters, Vol. 260, Issue 3-4, pp. 471-475, 1996 [11] S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, “Individual single-wall carbon nanotubes as quantum wires,” Nature, Vol. 386, Issue 6624, pp. 474-477, 1997 [12] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes,” Nature, Vol. 386, Issue 6623, pp. 377-379, 1997 [13] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science, Vol. 282, Issue 5391, pp. 1105-1107, 1998 [14] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. J. Dai, “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, Vol. 395, Issue 6705, pp. 878-881, 1998 [15] B. W. Smith, M. Monthioux, and D. E. Luzzi, “Encapsulated C60 in carbon nanotubes,” Nature, Vol. 396, Issue 6709, pp. 323-324, 1998 [16] A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai, “Large scale CVD synthesis of single-walled carbon nanotubes,” Journal of Physical Chemistry B, Vol. 103, Issue 31, pp. 6484-6492, 1999 [17] S. Berber, Y. K. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters, Vol. 84, Issue 20, pp. 4613-4616, 2000 [18] B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and P. Poulin, “Macroscopic fibers and ribbons of oriented carbon nanotubes,” Science, Vol.290, Issue 5495, pp. 1331-1334, 2000 [19] P. C. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotubes circuits using electrical breakdown,” Science, Vol. 292, Issue 5517, pp. 706-709, 2001 [20] M. Kociak, A. Y. Kasumov, S. Gueron, B. Reulet, I. I. Khodos, Y. B. Gorbatov, V. T. Volkov, L. Vaccarini, and H. Bouchiat, “Superconductivity in ropes of single-walled carbon nanotubes,” Physical Review Letters, Vol. 86, Issue 11, pp. 2416-2419, 2001 [21] T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, “Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition,” Chemical Physics Letters, Vol. 381, Issue 3-4, pp. 422-426, 2003 [22] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, “Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes,” Science, Vol. 306, pp. 1362-1364, 2004 [23] J. C. Meyer, M. Paillet, and S. Roth, “Single-molecule torsional pendulum,” Science, Vol. 309, Issue 5740, pp. 1539-1541, 2005 [24] J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus, and Z. F. Ren, “Superplastic carbon nanotubes – Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes,” Nature, Vol. 439, Issue 7074, p. 281, 2006 [25] A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, and O. Bakajin, “Nanofluidics in carbon nanotubes,” Nano Today, Vol. 2, Issue 6, pp. 22-29, 2007 [26] E. Bichoutskaia, A. M. Popov, and Y. E. Lozovik, “Nanotube-based data storage devices,” Materials Today, Vol. 11, Issue 6, pp. 38-43, 2008 [27] Y. Q. Xu, A. Barnard, P. L. McEuen, “Bending and twisting of suspended single-walled carbon nanotubes in solution,” Nano Letters, Vol. 9, Issue 4, pp. 1609-1614, 2009 [28] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, “Electronic structure of atomically resolved carbon nanotubes,” Nature, Vol. 391, Issue 6662, pp. 59-62, 1998 [29] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules,” Applied Physics Letters, Vol. 60, Issue 18, pp. 2204-2206, 1992 [30] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science, Vol. 275, Issue 5297, pp. 187-191, 1997 [31] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, Vol. 103, Issue 1-3, pp. 2555-2558, 1999 [32] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, Vol. 33, No. 7, pp. 883-891, 1995 [33] T. C. Wu, and S. H. Chang, “Temperature enhanced growth of ultralong multi-walled carbon nanotubes forest,” Current Applied Physics, Vol. 9, Issue 5, pp. 1117-1121, 2009 [34] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,” Nature, Vol. 381, Issue 6584, pp. 678-680, 1996 [35] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, “Carbon nanotube quantum resistors,” Science, Vol. 280, Issue 5370, pp. 1744-1746, 1998 [36] S. Farhat, M. L. de La Chapelle, A. Loiseau, C. D. Scott, S. Lefrant, C. Journet, and P. Bernier, “Diameter control of single-walled carbon nanotubes using argon-helium mixture gases,” Journal of Chemical Physics, Vol. 115, Issue 14, pp. 6752-6759, 2001 [37] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, “Carbon nanotube growth by PECVD: a review,” Plasma Sources Science and Technology, Vol. 12, Issue 2, pp. 205-216, 2003 [38] Y. M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, J. Cao, D. W. Wang, E. Yenilmez, Q. Wang, J. F. Gibbons, Y. Nishi, and H. J. Dai, “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method,” Nano Letters, Vol. 4, Issue 2, pp. 317-321, 2004 [39] S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, “Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates,” Applied Physics Letters, Vol. 83, Issue 22, pp. 4661-4663, 2003 [40] R. L. Vander Wal, T. M. Ticich, and V. E. Curtis, “Diffusion flame synthesis of single-walled carbon nanotubes,” Chemical Physics Letters, Vol. 323, Issue 3-4, pp. 217-223, 2000 [41] M. J. Height, J. B. Howard, J. W. Tester, and J. B. V. Sande, “Flame synthesis of single-walled carbon nanotubes,” Carbon, Vol. 43, Issue 11, pp. 2295-2307, 2004 [42] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chemical Physics Letters, Vol. 360, Issue 3-4, pp. 229-234, 2002 [43] Y. Murakami, S. Chiashi, Y. Miyauchi, M. H. Hu, M. Ogura, T. Okubo, and S. Maruyama, “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy,” Chemical Physics Letters, Vol. 385, Issue 3-4, pp. 298-303, 2004 [44] L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, and Y. T. Zhu, “Ultralong single-wall carbon nanotube,” Nature Materials, Vol. 3, Issue 10, pp. 673-676, 2004 [45] S. M. Huang, X. Y. Cai, and J. Liu, “Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates,” Journal of the American Chemical Society, Vol. 125, Issue 19, pp. 5636-5637, 2003 [46] M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A. C. Ferrari, A. M. Blackburn, K. Y. Wang, and J. Robertson, “Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures,” Nano Letters, Vol. 6, No. 6, pp. 1107-1112, 2006 [47] D. Laplaze, P. Bernier, L. Barbedette, J. M. Lambert, G. Flamant, M. Lebrun, A. Brunelle, and S. Dellanegra, “Production of fullerenes from solar-energy – the Odeillo experiment,” Comptes Rendus De L Academie Des Sciences Serie Li, Vol. 318, Issue 6, pp. 733-738, 1994 [48] C. Journet, and P. Bernier, “Production of carbon nanotubes,” Applied Physics A-Materials Science & Processing, Vol. 67, Issue 1, pp. 1-9, 1998 [49] M. Zhang, S. L. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science, Vol. 309, Issue 5738, pp. 1215-1219, 2005 [50] S. S. Fan, M. G, Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, Vol. 283, Issue 5401, pp. 512-514, 1999 [51] A. Y. Cao, H. W. Zhu, X. F. Zhang, X. S. Li, D. B. Ruan, C. L. Xu, B. Q. Wei, J. Liang, and D. H. Wu, “Hydrogen storage of dense-aligned carbon nanotubes,” Chemical Physics Letters, Vol. 342, Issue 5-6, pp. 510-514, 2001 [52] W. L. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, “Large-scale synthesis of aligned carbon nanotubes,” Science, Vol. 274, pp. 1701-1703, 1996 [53] X. F. Zhang, A. Y. Cao, B. Q. Wei, Y. H. Li, J. Q. Wei, C. L. Xu, and D. H. Wu, “Rapid growth of well-aligned carbon nanotube arrays,” Chemical Physics Letters, Vol. 362, Issue 3-4, pp. 285-290, 2002 [54] Y. Wang, F. Wei, G. H. Luo, G. Yu, and G. S. Gu, “The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor,” Chemical Physics Letters, Vol. 364, Issue 5-6, pp. 568-572, 2002 [55] D. N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, and S. Iijima, “Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis,” Physical Review Letters, Vol. 95, Issue 5, 056104, 2005 [56] S. P. Patole, P. S. Alegaonkar, H. C. Lee, and J. B. Yoo, “Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes,” Carbon, Vol. 46, Issue 14, pp. 1987-1993, 2008 [57] M. Kumar, and Y. Ando, “A simple method of producing aligned carbon nanotubes from an unconventional precursor - Camphor,” Chemical Physics Letters, Vol. 374, Issue 5-6, pp. 521-526, 2003 [58] S. Musso, S. Porro, M. Rovere, A. Chiodoni, and A. Taghaferro, “Physical and mechanical properties of thick self-standing layers of multiwall carbon nanotubes,” Diamond and Related Materials, Vol. 16, Issue 4-7, pp. 1174-1178, 2007 [59] P. A. Williams, S. J. Papadakis, A. M. Patel, M. R. Falvo, S. Washburn, and R. Superfine, “Torsional response and stiffening of individual multiwalled carbon nanotubes,” Physical Review Letters, Vol. 89, No. 25, 255502, 2002 [60] A. R. Hall, L. An, J. Liu, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, “Experimental measurement of single-wall carbon nanotube torsional properties,” Physical Review Letters, Vol. 96, No. 25, 256102, 2006 [61] Y. Wang, X. X. Wang, and X. G. Ni, “Atomistic simulation of the torsion deformation of carbon nanotubes,” Modelling and Simulation in Materials Science and Engineering, Vol. 12, Issue 6, pp. 1009-1107, 2004 [62] B. W. Jeong, J. K. Lim, and S. B. Sinnott, “Torsional stiffening of carbon nanotube systems,” Applied Physics Letters, Vol. 91, Issue 9, 093102, 2007 [63] B. W. Jeong, J. K. Lim, and S. B. Sinnott, “Multiscale-failure criteria of carbon nanotube systems under biaxial tension-torsion,” Nanotechnology, Vol. 18, Issue 48, 485715, 2007 [64] S. J. Papadakis, A. R. Hall, P. A. Williams, L. Vicci, M. R. Falvo, R. Superfine, and S. Washburn, “Resonant oscillators with carbon-nanotube torsion springs,” Physical Review Letters, Vol. 93, No. 14, 146101, 2004 [65] J. Zou, X. Huang, M. Arroyo, and S. L. Zhang, “Effective coarse-grained simulations of super-thick multi-walled carbon nanotubes under torsion,” Journal of Applied Physics, Vol. 105, No. 3, 033516, 2009 [66] A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, “Rotational actuators based on carbon nanotubes,” Nature, Vol. 424, Issue 6947, pp. 408-410, 2003 [67] V. P. Veedu, A. Y. Cao, X. S. Li, K. G. Ma, C. Soldano, S. Kar, P. M. Ajayan, and M. N. Ghasemi-Nejhad, “Multifunctional composites using reinforced laminae with carbon-nanotube forests,” Nature Materials, Vol. 5, Issue 6, pp. 457-462, 2006 [68] A. A. Zbib, S. D. Mesarovic, E. T. Lilleodden, D. McClain, J. Jiao, and D. F. Bahr, “The coordinated buckling of carbon nanotube turfs under uniform compression,” Nanotechnology, Vol. 19, Issue 17, 175704, 2008 [69] C. P. Deck, J. Flowers, G. S. B. McKee, and K. Vecchio, “Mechanical behavior of ultralong multiwalled carbon nanotube mats,” Journal of Applied Physics, Vol. 101, Issue 2, 023512, 2007 [70] H. J. Qi, K. B. K. Teo, K. K. S. Lau, M. C. Boyce, W. I. Milne, J. Robertson, and K. K. Gleason, “Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation,” Journal of the Mechanics and Physics of Solids, Vol. 51, Issue 11-12, pp. 2213-2237, 2003 [71] K. M. Liew, C. H. Wong, and M. J. Tan, “Twisting effects of carbon nanotube bundles subjected to axial compression and tension,” Journal of Applied Physics, Vol. 99, Issue 11, 114312, 2006 [72] B. W. Jeong, J. K. Lim, and S. B. Sinnott, “Elastic torsional responses of carbon nanotube systems,” Journal of Applied Physics, Vol. 101, Issue 8, pp 084309, 2007 [73] M. Endo, A. Oberlin, and T. Koyama, “High-resolution electron-microscopy of graphitizable carbon-fiber prepared by benzene decomposition,” Japanese Journal of Applied Physics, Vol. 16, Issue 9, pp. 1519-1523, 1977 [74] R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite, “Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene,” Journal of Catalysis, Vol. 30, Issue 1, pp. 86-95, 1973 [75] R. Seidel, G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau, and F. Kreupl, “Chemical vapor deposition growth of single-walled carbon nanotubes at 600°C and a simple growth model,” Journal of Physical Chemistry B, Vol. 108, Issue 6, pp. 1888-1893, 2004 [76] A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L. Simpson, “Transition between ‘base’ and ‘tip’ carbon nanofiber growth modes,” Chemical Physics Letters, Vol. 356, Issue 5-6, pp. 527-533, 2002 [77] O. A. Louchev, Y. Sato, and H. Kanda, “Growth mechanism of carbon nanotube forests by chemical vapor deposition,” Applied Physics Letters, Vol. 80, No. 15, pp. 2752-2754, 2002 [78] M. J. Yacaman, M. M. Yoshida, and L. Rendon, “Catalytic growth of carbon microtubules with fullerene structure,” Applied Physics Letters, Vol. 62, Issue 2, pp. 202-204, 1993 [79] M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W. Kroto, “The production and structure of pyrolytic carbon nanotubes,” Journal of Physics and Chemistry of Solids, Vol. 54, Issue 12, pp. 1841-1848, 1993 [80] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth (New method growth catalysis from impurity whisker epitaxial + large crystals Si E),” Applied Physics Letters, Vol. 4, Issue 5, pp. 89-&, 1964 [81] William B. Bickford, Mechanics of solids: concepts and applications, Richard D. IRWIN, 1993 [82] S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, “Atomic-scale imaging of carbon nanofibre growth,” Nature, Vol. 427, Issue 6973, pp.426-429, 2004 [83] S. S. Fan, W. J. Liang, H. Y. Dang, N. Franklin, T. Tombler, M. Chapline, and H. J. Dai, “Carbon nanotube arrays on silicon substrates and their possible application,” Physica E, Vol. 8, pp. 179-183, 2000 [84] W. Kim, H. C. Choi, M. Shim, Y. M. Li, D. W. Wang, and H. J. Dai, “Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes,” Nano Letters, Vol. 2, No. 7, pp. 703-708, 2002 [85] E. Terrado, I. Tacchini, A. M. Benito, W. K. Maser, and M. T. Martinez, “Optimizing catalyst nanoparticle distribution to produce densely-packed carbon nanotube growth,” Carbon, Vol. 47, Issue 8, pp. 1989-2001, 2009 [86] Y. T. Lee, N. S. Kim, J. Park, J. B. Han, Y. S. Choi, H. Ryu, and H. J. Lee, “Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000°C,” Chemical Physics Letters, Vol. 372, pp. 853-859, 2003 [87] K. E. Kim, K. J. Kim, W. S. Jung, S. Y. Bae, J. Park, J. Choi, and J. Choo, “Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene,” Chemical Physics Letters, Vol. 401, pp. 459-464, 2005 [88] S. Chakrabarti, T. Nagasaka, Y. Yoshikawa, L. J. Pan, and Y. Nakayama, “Growth of super long aligned brush-like carbon nanotubes,” Japanese Journal of Applied Physics, Vol. 45, No. 28, pp. L720-L722, 2006 [89] S. M. Huang, M. Woodson, R. Smalley, and J. Liu, “Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process,” Nano Letters, Vol. 4, No. 6, pp. 1025-1028, 2004 [90] Y. J. Jung. B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Mechanism of selective growth of carbon nanotubes on SiO2/Si patterns,” Nano Letters, Vol. 3, No. 4, pp. 561-564, 2003 [91] R. Xiang, G. H. Luo, Z. Yang, Q. Zhang, W. Z. Qian, and F. Wei, “ Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition,” Nanotechnology, 18, 415703, 2007 [92] J. Cao, Q. Wang, and H. J. Dai, “Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching,” Physical Review Letters, Vol. 90, No. 15, 157601, 2003 [93] L. Bokobza, and C. Belin, “Effect of strain on the properties of a styrene-butadiene rubber filled with multiwall carbon nanotubes,” Journal of Applied Polymer Science, Vol. 105, pp. 2054-2061, 2007 [94] H. S. Jang, S. H. Kwon, Y. H. Lee, U. B. Baek, J. S. Park, A. K. Kim, and S. H. Nahm, “In-situ resistance measurements during tensile test of carbon nanotube using nano-manipulator,” SICE-ICASE International Joint Conference, Vols. 1-13, pp. 4881-4884, 2006 [95] L. Zalamea, H. Kim, and R. B. Pipes, “Stress transfer in multi-walled carbon nanotubes,” Composites Science and Technology, Vol. 67, Issue 15-16, pp. 3425-3433, 2007 [96] A. Kis, G. Csanyi, J. P. Salvetat, T. N. Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger, and L. Forro, “Reinforcement of single-walled carbon nanotube bundles by intertube bridging,” Nature Materials, Vol. 3, Issue 3, pp. 153-157, 2004 [97] C. M. McCarter, R. F. Richards, S. D. Mesarovic, C. D. Richards, D. F. Bahr, D. McClain, and J. Jiao, “Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf,” Journal of Materials Science, Vol. 41, Issue 23, pp. 7872-7878, 2006 [98] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro, “Elastic and shear moduli of single-walled carbon nanotube ropes,” Physical Review Letters, Vol. 82, Issue 5, pp. 944-947, 1999 [99] R. Jin, Z. X. Zhou, D. Mandrus, I. N. Ivanov, G. Eres, J. Y. Howe, A. A. Puretzky, and D. B. Geohegan, “The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes,” Physica B, Vol. 388, pp. 326-330, 2007 [100] K. Bradley, S. H. Jhi, P. G. Collins, J. Hone, M. L. Cohen, S. G. Louie, and A. Zettl, “Is the intrinsic thermoelectric power of carbon nanotubes positive?,” Physical Review Letters, Vol. 85, No. 20, pp. 4361-4364, 2000 [101] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettle, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science, Vol. 287, pp. 1801-1804, 2000
|