跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝明哲
研究生(外文):Ming-Che Hsieh
論文名稱:無閥式微幫浦之腔體設計與作動機制研究
論文名稱(外文):A Study on Chamber Design and Flow Mechanism of Valveless Micropump
指導教授:王安邦王安邦引用關係
指導教授(外文):An-Bang Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:153
中文關鍵詞:壓電無閥式微幫浦渦漩對擴張角旋轉角多流道進出口雙心型振動腔設計內流場可視化微幫浦經驗模型
外文關鍵詞:PZT valveless micropumpvortex pairdiffuser anglerotating anglemulti inlets and outletsdouble-hearted vibrating chamber designflow visualizationmicropump analogy empirical modeling
相關次數:
  • 被引用被引用:4
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本研究透過專利與期刊論文之檢索首先針對機械薄膜微幫浦的各式動力源與閥門結構作一趨勢分析,結果發現「壓電式」動力源為所有研究應用之主流;微幫浦可依閥門分為「有閥」與「無閥」兩大類;有閥又可分為主動閥與被動閥,而被動閥在歷年專利與論文的累積數量上皆占第一,但其近幾年之成長已趨向飽和,故可知此一技術發展已邁入成熟期。目前業界側重於微幫浦的主動閥研究,而在學界因為無閥式結構簡單、不需耗能且無疲勞、阻塞等特色,在近幾年大幅成長漸成主流,但其也意味著無閥式微幫浦仍在萌芽開發期,甚具高發展性與可專利性,因此,吾人選定壓電無閥式微幫浦為本文之主題。
有別於傳統利用微機電技術所製作之矽晶片微幫浦,吾人採用塑膠基材與雷射加工之方式以節省模型製程開發的時間與成本。另外,因為目前無閥式微幫浦的研究皆僅止於整流器之創新設計,尚未有文獻針對振動腔內之流場作分析,所以本文在流體力學相似律的基礎上,藉由流場可視化與流力分析,在文獻中第一次系統性探討微幫浦設計參數對振動腔內渦漩發展型態之影響。由流場分析結果發現:振動腔內最大渦漩之尺寸,決定於進、出口渦漩流之發展及其與腔體壁的相互作用。而本文也發現:微幫浦之流體傳輸效率與進、出口渦漩對之發展緊密相關;例如:平均流場之出口端渦漩對的「中心距」、「中心眼位置」、「出口端平均噴流速度」以及「渦漩對平均強度」,皆與幫浦效率之消長有完全一致之趨勢。而後,吾人更進一步依據上述流場渦漩發展之分析,並參考澎湖七美「雙心石滬」之幾何構形,設計出一全新的無閥式雙心振動腔體之微幫浦設計,實驗結果發現幫浦效率可明顯提升約一倍。
此外,本文也對噴嘴/擴散器的效能探討,發現改變擴散器之張角(2θ)、細長比(L1/W1) 及喉部入口設計等之效能趨勢皆與習知巨觀水力試驗裡的擴散器結果一致。在本文之實驗雷諾數範圍(Re=50~100)下,吾人發現擴散器的最佳設計為2θ=10o及L1/W1=18。而吾人亦改變噴嘴/擴散器的相對位置(定義為旋轉角α),發現在α為45度與135度時,流量各約有30%、15%之提升;但在α為90度時性能卻沒有改變。而在多進(口)、多出(口)之微幫浦設計測試中,可發現兩進一出之設計約有20%流量之增加;但在一進兩出之設計淨流量則明顯縮減約40%。上述結果說明改變噴嘴/擴散器之相對位置與進、出口數量會對腔體內漩之發展情況造成影響,而使得幫浦的效率有所變異。
另外,微流元件性能之重複性在過往的相關文獻鮮少被提及,經常可發現其容易受環境因素或製程的影響使得性能難以被維持或重現。因此吾人在本文也發展出一標準實驗加工及測試流程,以確保本文各項設計參數實驗結果之可信度及可重複性。
本文最後利用力與電流類比的方式建立一無閥式微幫浦經驗模型,可提供作為變更設計參數時,估算系統共振頻之參考輔助工具。
The research analyzed the trend of various kinds of “actuators” and “valves” of mechanical membrane micropump by patent and jounal paper searching. “Piezoelectirc” actuator is the most popular one in all researches and applications. The valve of micropump can be divided into “with valve” and “no valve (valveless)” two types, and the fore is classified into “active” and “passive” types. Athough the passive valve is with the greatest numbers of papers and patents, it has gradually been in the mature period. Nowadays, the industry puts emphasis on the active valve research of micropump, but the valveless research is gradually popular with the academic because of its merits of “no fatigue”, “easy fabrication.” This means “valveless micropump” is in the developing period and with high possibility of patenting. Therefore, “piezoeletirc valveless micropump” is choosen as my researching topic.
The research used plastic materials to fabricate the valveless micropump in order to dispense with fabrication time and capital. And the effect of designed parameters on the patterns of two vortex pairs in the pumping chamber were systematically discussed by the flow visualization system.
By the establishment of flow visualization system, “the core distance”, “the core position of vortex pair”, “jet mean velocity”, and “mean vortices” at the outlet diffuser are highly related to the pumping efficiency in the quasi-steady flow. Further, a novel design of vibrating chamber which was based on the concept of “double-hearted stone tidal weirs” in the Penghu island and the experimental analysis of vortex development inside the chamber was proposed. The new design can elevate the rectification efficiency, and be applied in various kinds of micro-valve designs for each kinds of mechanical membrane pump.
The diffuser opening angle (2θ), aspect ratio (L1/W1) and the inlet design at the throat were varied to find that the pumping efficiency which has the same trend as diffusers in the macroscopic hydraulic experiment. The results showed that the optimal design of nozzle/diffuser is diffuser angle 10o and aspect ratio 18. Besides, there is a reverse direction flow happening due to the asymmetric 3D recirculation flow at the diffuser wall with a larger opening angle 70o. When varying the relative position of inlet and outlet diffuser or numbers of inlet and outlet, it would change the vortex patterns inside the chamber and also the pumping efficiency.
The repeatability of microfluidic element performance is hardly mentioned in the past literatures. The performace is hard to be maintained because of some environmental and manufacturing problems. Consequently, a standard machining and testing process are developed to confirm the credibility and repeatability of experimental results.
In the last part of the paper, the method of ”force-current analogy” is utlized to empirically model the micropump in order to provide the guidelines of preliminary pump design and instantly estimate the resonant frequency and flow trend.
口試委員會審定書.....................................i
碩博士論文授權書....................................ii
誌謝...............................................iii
中文摘要.............................................v
英文摘要............................................ix
圖目錄.............................................xiv
表目錄............................................xxii
符號說明..........................................xxiv
第一章 文獻回顧與專利趨勢分析......................01
1.1前言.............................................01
1.1.1 機械薄膜式微幫浦簡介..........................01
1.1.1.1 依致動器分類................................01
1.1.1.2 依微閥門分類................................03
1.1.2 由期刊論文分析薄膜式微幫浦之發展趨勢..........04
1.1.2.1 致動器種類..................................04
1.1.2.2 微閥門種類..................................04
1.1.3 由專利分析薄膜式微幫浦之發展趨勢..............05
1.1.3.1 致動器種類..................................05
1.1.3.2 微閥門種類..................................05
1.1.4 機械薄膜式微幫浦之發展趨勢整理與分析..........06
1.2無閥式微幫浦之分類與文獻回顧.....................08
1.3研究動機.........................................10
第二章 壓電無閥式微幫浦原理與分析..................12
2.1壓電材料之基本原理...............................12
2.1.1 壓電原理介紹..................................12
2.1.2 壓電材料之方向與參數定義......................12
2.1.3 壓電致動方程式................................14
2.2 無閥式微幫浦之基本原理..........................16
2.2.1 原理介紹......................................16
2.2.2 流量理論分析..................................16
第三章 實驗儀器與方法...............................20
3.1 實驗儀器與架設..................................20
3.1.1 微幫浦製作....................................20
3.1.2 壓電驅動系統..................................21
3.1.3 量測與資料擷取系統............................21
3.1.3.1 流量量測系統................................21
3.1.3.2 壓電片振動量測系統..........................22
3.1.4 流場可視化系統................................22
3.1.4.1 實驗顯影系統................................22
3.1.4.2 影像後處理與分析(PIV原理介紹) ..............24
3.2 實驗方法與步驟..................................25
第四章 實驗設計研究與結果討論.......................26
4.1 微幫浦實驗重複性之改善..........................26
4.1.1 微幫浦重複性之影響因素........................26
4.1.1.1氣泡的影響...................................26
4.1.1.2微幫浦重複性驗證結果.........................28
4.1.2微幫浦製程可重複性之測試結果...................29
4.2 微幫浦噴嘴/擴散器之設計與探討...................31
4.2.1 單腔式微幫浦..................................31
4.2.1.1 噴嘴/擴散器研究.............................31
4.2.1.1.1 擴張角(2θ) ..............................34
4.2.1.1.2 細長比(L1/W1) ............................36
4.2.1.1.3 擴散器入口條件的改變......................37
4.2.1. 2 旋轉角(α)研究…...........................39
4.2.1. 3 多對一與一對多之進、出口研究...............39
4.2.2 雙腔式微幫浦..................................40
4.3 壓電驅動訊號與振動模態之探討....................43
4.3.1 弦波與方波之差異性比較........................43
4.3.2 壓電片振動模態分析............................44
4.4 微幫浦振動腔內流場機制之探討....................46
4.4.1微幫浦之振動腔流場機制探討及優化設計...........46
4.4.1.1 振動腔流場之定性分析........................46
4.4.1.2 振動腔流場之定量分析........................48
4.4.1.2.1 平均流場分析..............................48
4.4.1.2.2 暫態流場分析……..........................49
4.4.1.3 渦漩形成原因與淨流量產生之機制..............50
4.4.2 各式幾何構型設計之微幫浦流場顯影結果..........51
4.4.2.1 擴張角(2θ)之流場顯影結果...................51
4.4.2.2 旋轉角(α)之流場顯影結果....................51
4.4.2.3 多對一與一對多進、出口之流場顯影結果........53
4.5 新式振動腔設計..................................54
4.5.1 設計概念與依據介紹............................54
4.5.2實驗結果與分析.................................55
4.6 不同黏度流體之流量量測與微幫浦類比電路模型之建立57
4.6.1 不同黏度工作流體之流量測試結果................57
4.6.2 類比電路分析模型..............................58
4.6.2.1 類比理論簡介................................58
4.6.2.2 類比經驗模型分析結果........................60
4.6.3 實驗與理論交叉比對分析........................62
第五章 結論與未來展望...............................64
5.1 結論............................................64
5.2 未來展望........................................69
參考文獻...........................................139
附錄I 壓電位移分析程式.............................143
附錄 II 流量即時監控程式...........................145
附錄 III 質點影像分析儀(PIV)程式...................146
附錄 IV 微幫浦電路類比模型分析程式.................151
作者資料...........................................153
期刊、會議論文、書籍
[1] A. Nisar, Nitin Afzulpurkar, Banchong Mahaisavariya, Adisorn Tuantranont, “Micropumps in Drug Delivery and Biomedical Applications”,Sensors and Actuators B-Chemical, OCT 2007
[2] Nam-Trung Nguyen, Xiaoyang Huang, Toh Kok Chuan, “MEMS- micropumps: A review”, Journal of Fluids Engineering-Transactions of The ASME, 124 (2): 384-392 JUN 2002
[3] Laser, Santiago, “A review of micropumps”, Journal of Micromechanics and Microengineering, 14 (6): R35-R64 JUN 2004
[4] Nan Chyuan Tsai, Chung Yang Sue, “Review of MEMS based drug delivery and dosing systems”, Sensors and Actuators A, Physical, 134 (2007) 555–564
[5] R. Linnemann, P. Woias, C.-D. Senfft, J.A. Ditterich, ”A self-priming and bubble-tolerant silicon micropump for liquids and gases”, in:Proceedings of the MEMS ‘98, Heidelberg, Germany, 25–29 January,1998, pp. 532–537.
[6] Tingrui Pan, Scott J McDonald, Eleanor M Kai, Babak Ziaie, ”A magnetically driven PDMS micropump with ball check-valves”, Journal of Micromechanics and Microengineering, 15 (2005): 1021-1026
[7] E. Stemme, G. Stemme, A valveless diffuser/nozzle–based fluid pump, Sensors and Actuators A, Physical, 39 (2) (1993) 159–167
[8] A. Olsson, E. Stemme, G. Stemme, “A Vavle-less Planar Fluid Pump With 2 Pump Chambers”, Sensors and Actuators A-Physical, 47 (1-3): 549-556 MAR-APR 1995
[9] A. Olsson, P. Enoksson, G. Stemme, E. Stemme, “Micromachined flat-walled valveless diffuser pumps”, Journal of Microelectomechanical Systems, 6 (2): 161-166 JUN 1997
[10] 李俊賢,「可攜式無閥壓電微幫浦之設計製作與應用」, 台灣大學應用力學研究所碩士論文2003
[11] 涂智凱,「新式無閥門微幫浦之開發」, 台灣大學應用力學研究所碩士論文2003
[12] Teng Yong Ng, Diao Xu, Khin Yong Lam, United state patent (Patent No.: US 6910869), Institute of High Performance Computing, Singapore, 2005
[13] Ivano Izzo, Dino Accoto, Arianna Menciassi, Lothar Schmitt, Paolo Dario, ”Modeling and experimental validation of a piezoelectric micropump with novel no-moving-part valves”, Sensors and Actuators A-Physical ,Vol.133: 128-140 , 2007

[14] Jae Sung Yoon, Jong Won Choi, Il Hwan Lee, Min Soo Kim, ”A valveless micropump for bidirectional applications”, Sensors and Actuators A-Physical, Vol. 135: 833-838, 2007
[15] Christopher J. Morris, Fred K. Forster, “Low-Order Modeling of Resonance for Fixed-Valve Micropumps Based on First Principles”, Journal of Microelectromechanical Systems, VOL. 12, NO. 3, JUNE 2003
[16] Bringley Thomas T.,Childress Stephen, Vandenberghe Nicolas, Zhang Jun, ”An experimental investigation and a simple model of a valveless pump”, Physics of Fluids 20, 033602 (2008)
[17] Arian S. Forouhar, Michael Liebling, Anna Hickerson, Abbas Nasiraei-Moghaddam, Huai-Jen Tsai, Jay R. Hove, Scott E. Fraser, Mary E. Dickinson, Morteza Gharib, “The Embryonic Vertebrate Heart Tube Is a Dynamic Suction Pump”, Science 2006
[18] 孫珍理、楊宗翰、高然星,「微擴散器泵的最佳設計」,國立台灣科技大學機械工程研究所 2006
[19] C-L Sun and K H Huang, “Numerical characterization of the flow rectification of dynamic microdiffusers”, Journal of Micromechanics and Microengineering, 16:1331–1339,2006
[20] Andersson H., van der Wijngaart W, Nilsson P, Enoksson P, Stemme G.,” A valve-less diffuser micropump for microfluidic analytical systems”, Sensors and Actuators B-Chemical, SEP 2000
[21] Olsson, A., Stemme, G. and Stemme, E., “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps, Sensors and Actuators A: Physical, 84,pp.165-175(2000)
[22] Singhal V., Garimella, S. V., Murthy ,J. Y., “Low Reynolds number flow through nozzle-diffuser elements in valveless micropump”, Sensors and Actuators A: Physical, 113, pp.226-235(2004)
[23] 楊愷祥,「壓電無閥式微幫浦之製造與量測分析」, 國立雲林科技大學工程科技技術研究所2003
[24] Dantec® Dynamics_http://www.dantecdynamics.com/Default.aspx?ID=1049
[25] R. Zengerle, M. Leitner, S. Kluge, A. Richter, “Carbon Dioxide Priming of Micro Liquid Systems”, IEEE, 1995
[26] M. Richter, R. Linnemann, P. Woias, “Robust design of gas and liquid micropumps”, Sensors and Actuators A –Physical 68 ( 1998) 480-486
[27] Olsson, A., Stemme, G., Stemme, E., “A numerical design study of the valveless diffuser pump using a lumped-mass model”, Journal of Micromechanics and Microengineering, 9 (1999) 34–44
[28] Guennoun Faiçal, Farhat Mohamed, Ait Bouziad Youcef, Avellan François, Pereira Francisco, “Experimental investigation of a particular traveling bubble cavitation”, Proceedings of the 5th International Symposium on Cavitation CAV2003, 2003
[29] Che-Yi Shen, Hsien-Kuang Liu , “Fabrication and Drive Test of Piezoelectric PDMS Vavleless Micro Pump”, Journal of the Chinese Institute of Engineers, Vol. 31, No. 4, pp. 615-623 (2008)
[30] P.W. Rundstadler, F.X. Dolan, R.C. Dean, Diffuser Data Book, Creare, Hanover, NH, 1975
[31] J.E. Idelchik, Handbook of Hydraulic Resistance, 2nd edn., Haper & Row, New York, 1986
[32] Cockrell D J, Markland E., “A review of incompressible diffuser flow, Aircraft Engineering 35, 1963, 286-292
[33] White F M, Fluid Mechanics, 5th edn., McGraw-Hill, Singapore, 1999
[34] Artyushkina G K, “On the hydraulic resistance during laminar fluid flow in conical diffusers”, Tr. LPI no. 333, 1973, 104-106
[35] Olsson, A., Stemme, E., Stemme, G., “Diffuser-element design investigation for vavleless pumps”, Sensors and Actuators A –Physical 57, pp. 137-143, 1996
[36] T. Gerlach, H. Wurmus, “Working principle and performance of dynamic micropump”, Sensors and Actuators A –Physical 50, pp. 135-140, 1995
[37] T. Gerlach,”Microdiffusers as a dynamic passive vavle for micropump applications”, Sensors and Actuators A –Physical 69, pp. 181-191, 1998
[38] X.N. Jiang, Z.Y. Zhou, X.Y. Huang, Y. Yang, C.Y. Liu, “Micronozzle/ diffuser flow and its application in micro vavleless pumps, Sensors and Actuators A –Physical 70, pp. 81-97, 1998
[39] Chen-li Sun, Zone Han Yang, “Effects of the half angle on the flow rectification of a microdiffuser”, Journal of Micromechanics and Microengineering, 17 (2007) 2031–2038
[40] Yi-Chun Wang, Jui-Cheng Hsu, Ping-Chi Kuo, Yung-Chun Lee, “Loss characteristics and flow rectification property of diffuser valves for micropump applications”, Journal of Heat and Mass Transfer, 52 (2009) 328–336
[41] Yang Z., Goto H., Matsumoto M., Maeda, R.,”Ultrasonic micromixer for microfluidic systems”, Sensors and Actuators A, Jan 2000
[42] Yih-Lin Cheng, Jiang-Hong Lin, “Manufacture of three-dimensional valveless micropump”, Journal of Materials Processing Technology, 192–193 (2007) 229–236
[43] Olsson, A., Stemme, E., Stemme, G., “A valve-less planar fluid pump with two pump chambers”, Sensors and Actuators A-Physical 46-47 (1995) 549-556
[44] Amos Ullmann, “The piezoelectric valve-less pump-performance enhancement analysis”, Sensors and Actuators A-Physical, 69 (1998) 97-105
[45] Fan B, Song G, Hussain F, “Simulation of a piezoelectrically actuated valveless micropump”, Smart Materials & Structures , Vol.14:400-405, 2005
[46] Christophe Yamahata, Caroline Vandevyver, Fre′de′ric Lacharme, Paulina Izewska, Horst Vogel, Ruth Freitagb and Martin A. M. Gijs, “Pumping of mammalian cells with a nozzle-diffuser micropump”, Lab on a Chip, (2005) 5, 1083–1088
[47] Morteza Gharib, Edmond Rambod, Karim Shariff, “A universal time scale for vortex ring formation”, Journal of Fluid Mechanics (1998), vol. 360, pp. 121-140
[48] Durst F., Melling A., Whitelaw J.H.,”Low Reynolds Number Flow Over a Plane Symmetric Sudden Expansion”, Journal of Fluid Mechanics, 1974, Vol. 64, 111-128
[49] Cherdron W., Durst F., Whitelaw J.H., “Asymmetric Flow and Instabilities in Symmetiric Ducts With Sudden Expansion”, Journal of Fluid Mechanics, 1978, Vol. 84, 13-31
[50] Tsui YY, Wang CK., “Calculation of Laminar Separated Flow in Symmetric Two-Dimensional Diffuser”, Journal of Fluid Engineering, 1995, vol. 117, pp 612-616
[51] Bourouina T., Grandchamp, JP., “Modeling micropumps with electrical equivalent networks”, Journal of Micromechanics and Microengineering, 6 (1996) 398–404
[52] Shen M., Yamahata C, Gijs MAM., ”A high-performance compact electromagnetic actuator for a PMMA ball-valve micropump”, Journal of Micromechanics and Microengineering, 18 (2008) 025031
[53] M. Heschel, M. M‥ullenborn, S. Bouwstra, “Fabrication and Characterization of Truly 3-D Diffuser/Nozzle Microstructures in Silicon”, Journal of Micromechanical Systems, VOL. 6, NO. 1, MARCH 1997
[54] Yi-Chu Hsu, Tang-Yuan Chen, “Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices”, Biomed Microdevices (2007) 9:513–522
[55] C. W. Tsao, L. Hromada, J. Liu, P. Kumar and D. L. DeVoe, Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment, Lab On a Chip, 2007, 7, 499–505
[56] Yamahata C, Lotto C, Al-Assaf E, Gijs MAM, “A PMMA valveless micropump using electromagnetic actuation”, MicrofIuidics and Nanofkuidics,2005
網站
[57] http://www.nownews.com/2008/05/26/11426-2273614.htm
[58] http://www.nownews.com/2004/09/04/743-1681539.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top