跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何承洲
研究生(外文):Chen-Chou Ho
論文名稱:微粒子影像測速儀應用於輪蟲運動的研究
論文名稱(外文):Study on the motion of rotifer Philodina by Micro Particle Image Velocimetry
指導教授:沈弘俊沈弘俊引用關係
指導教授(外文):Horn-Jiunn Sheen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:155
中文關鍵詞:纖毛輪蟲渦漩旋輪蟲推力
外文關鍵詞:ciliarotifervortexPhilodinathrust
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
縱古觀今,已有許多研究學者在仿生領域有許多學術上的研究貢
獻。諸如鳥飛魚游等大型動物的運動機制,但是鮮少有人去研究微生
物之運動機制方面的細節。而在本研究中,目的就是去探究旋輪蟲頭
冠上的纖毛擺動對流場所造成的影響,而此流場的影響又會對其運動
有怎樣的幫助或抑制。以纖毛所產生之流場結構、影響轉向的因素與
推進力量作為研究主軸,並探討與其他生物的運動做比較後的差異,
希望能更進一步了解旋輪蟲的運動行為。實驗分析是去量測旋輪蟲纖
毛擺動所產生之渦漩的速度向量場,並且進一步計算此相對應的推進
力量,來了解旋輪蟲是如何在水中進行此高效率且極富機動性的的游
泳運動。此外,在實驗過程中並無對旋輪蟲做任何的操控與限制,因
為旋輪蟲是一個極微小的微生物(長度100~400μm),而且對週遭環境極敏感。因此從微粒子影像測速儀量測及流場觀察中可以發現,兩個影響到旋輪蟲轉向的因素為渦漩對強度的差異和旋輪蟲蟲體自身的擺動扭曲。接著由定性的流場視覺化分析結果可知,旋輪蟲有三種不同的運動模態: (1) 輪蟲原地擺動纖毛不轉向 (2) 輪蟲原地擺動纖毛做順逆時針的轉向 (3) 輪蟲游動前進。三者皆以數位攝影機記錄其流場結構,並採用微粒子影像測速儀(micro-particle image velocimetry, μ-PIV)做定量的分析。μ-PIV流場的量測顯示渦漩對是由旋輪蟲的纖毛擺動所
產生的,且蟲體中央的推力是由於纖毛擺動產生一股往後的噴流所導
致。當旋輪蟲於原地擺動纖毛不轉向時,頭冠前方所產生的兩渦漩之
強度差異很小。當旋輪蟲於原地擺動且纖毛做順時針的轉向時,左前
方之渦漩的大小及強度皆大於右前方之渦漩,反之亦然。當旋輪蟲游
動前進時,一共會產生四個渦漩,除了前方兩渦漩外,亦會於蟲體兩
側產生兩個的渦漩,且在蟲體兩側的渦漩對之大小及強度也是大於前
方兩渦漩的。其中,頭冠前方所產生的渦漩對主要是幫助兩旁水流往
蟲體中央集中並朝向尾巴往後噴出,因此給予自身作用力而成為游泳
前進的主要推力。而蟲體兩側的渦漩主要是可以幫助旋輪蟲游動前
進,因為此兩渦漩減少了旋輪蟲在游泳過程中的摩擦阻力。輪蟲前進
最大的速度可達到5.17mm/s。經過計算後,可推知前進最大的推力可
達到0.197nN,所以每單位重量的最大推力為5.25μN/g。故旋輪蟲約需耗費此數量級的力量,才可將其尾巴固定在某一基質上。
Nowadays, there are many researches on the motion mechanism of fishes, birds and other animals, but few on tiny creatures has been investigated. The objective of this study is to understand the influence of cilia for a rotifer (Philodina) on its process of turning and swimming. We utilized micro-particle-image velocimetry (μ-PIV) to measure the velocity fields in vortecies which are induced by the cilia of Philodina and to evaluate the corresponding hydrodynamic force to know how can Philodina perform highly efficient and maneuverable swimming locomotion in the water. In addition, the experiments are carried out using nothing to limit the locomotion of Philodina because Philodina is a tiny creature (200~400μm in length) and is sensitive to environment. Therefore, the two factors to affect body-turning of Philodina are difference between strength of two vortices induced by cilia and body-turing. Both of them can not be eliminated. The qualitative flow visualization of vortices produced by Philodina show that there are three locomotion types. (1) position holding with cilia beating, (2) body-bending with cilia beating , (3) pure forward swimming. The flow field measurement by using μ-PIV shows that vortex pairs were generated by cilia of Philodina and the central jet force was produced as a result of cilia beating. When Philodina is at the same position with no body-bending, there is no significant difference between two front vortices generated from the corona cilia. While turning clockwise, size and strength of the left vortex produced by cilia of Philodina is larger than the right one, and vice versa. While swimming forward, the two lateral vortices are larger than front ones in size and strength. Moreover, the two front vortices help Philodina push fluid toward tail-like part and give reacting force to Philodina to become the main source of thrust and the two lateral vortices help Philodina swim forward because they decrease friction drag while Philodina is swimming. The maximum velocity of Philodina is 5.17mm/s and the maximum thrust is 0.197nN. Therefore the maximum thrust per unit weight is 5.25μN/g. Consequence, we can conclude that Philodina has to spend this kind level of force at to hold on the same place.
摘要 1
Abstract 3
目次 5
表目錄 8
圖目錄 9
符號說明 15
第一章 緒論 17
1-1 前言 17
1-2 研究動機及目的 23
1-3 文獻回顧 28
1-3-1 微粒子影像測速儀 28
1-3-2 輪蟲 31
1-4 研究方法 36
1-5 論文架構 37
第二章 輪蟲 38
2-1 概述 38
2-2 型態構造 38
2-2-1 頭部 39
2-2-2 軀幹部 41
2-2-3 足部 41
2-2-4 體壁 42
第三章 實驗設備架構原理與實驗步驟 43
3-1 微粒子影像測速儀系統 43
3-2 實驗設置 44
3-3 微粒子影像測速儀設備 45
3-4 微粒子影像測速儀原理 51
3-5 實驗步驟 53
3-5-1 視野校正 53
3-5-2 μ-PIV使用於研究輪蟲之纖毛運動 54
第四章 理論與流場分析方法 66
4-1 光路選擇 66
4-2 利用m-PIV 做輪蟲研究之分析 66
4-3 vorticity之計算 68
4-4 流場分析方法 70
4-5 MEMS製作流程 72
4-5-1 基材清潔 (Clean) 72
4-5-2 光阻塗佈 (Coating) 73
4-5-3 軟烤 (Soft bake) 73
4-5-4 曝光 (Exposure) 74
4-5-5 顯影 (Development) 74
4-5-6 硬烤 (Hard bake) 75
4-5-7 運用MEMS技術製造微流道 75
4-5-7-1 SU-8微流道母模製作 75
4-5-7-2 PDMS微流道製作 77
4-6 元件接合與外部連結方式 79
4-7 實驗設備 79
第五章 實驗結果與討論 81
5-1 即時影像處理 81
5-2 輪蟲於原地擺動纖毛不轉向 82
5-2-1 輪蟲於原地擺動纖毛並做順時針轉向 83
5-2-2 輪蟲於原地擺動纖毛並做逆時針轉向 86
5-2-3 影響輪蟲於原地擺動纖毛轉向的因素探討 87
5-3 輪蟲游動前進 92
5-3-1 輪蟲於270mm之微流道中游動 97
5-3-2 輪蟲於600mm之微流道中游動 97
第六章 結論與未來展望 104
6-1 結論 104
6-2 未來展望 105
參考文獻 107
Abraham, E.R.” The generation of plankton patchiness by turbulent stirring”, Nature, Vol. 38, pp. 577-580 (1998)
Angele, K.P., Suzuki, Y., Miwa, J., Kasagi, N., Yamaguchi, Y., “Development of a high-speed Scanning micro-PIV system”, 6th International Symposium on Particle Image Velocimetry Pasadena (2005)
Berdalet, E., “Effects of turbulence on the marine dinoflagellate Gymnodium nelsoni “, J. Phycol., Vol. 28, pp. 267-272 (1992)
Catton, K.B., Webster, D.R., Brown, J., and Yen, J., ”Quantitative Analysis of Tetheres Versus Free-Swimming Copepod Flow Fields”, The Journal of Experimental Biology, Vol. 210, pp. 299-310 (2007)
Cengel, Y.A., and Cimbala, J.M., ”Fluid Mechanics: Fundamentals and Applications”, McGraw-Hill, Inc. (2004)
Clement, P., and Wurdak, E., “In microscopic anatomy of invertebrates”, Vol. 4, Wiley-Liss (1991)
Diluzio, W.R., Turner, L., Mayer, M., Garstecki, P., Weibel, D.B., Berg, H.C., and Whitesides, G.M., ”Escherichia coli swim on the right-hand side”, Nature, Vol. 435, pp. 1271-1274, 30 June (2005)
Earnshaw, H.C., and Gcreated, C.A., ”Dynamics of ripple bed vortices”, Experiments in Fluids, Vol. 25, pp. 265-275 (1998)
Epp, R.W., and Lewis, W.M., ” Cost and speed of locomotion for rotifers”, Oecologia, Vol. 61, pp. 289-292 (1984)
Fera, M.Y., Pascual, E., and Olivares, J.M., “Factors affecting swimming speed in the rotifer Brachionus plicatilis”, Hydrobiologia, Vol. 546, pp. 375–380 (2005)
Gill, A.E., ”Atmosphere-ocean dynamics”, Academic Press, New York, pp. 622 (1982)
Grula, E.M., and Bovee, C., “Ingestion and subsequent loss of a rotifer by stentor coeruleus”, Trans. Amer. Micros. Soc., Vol. 96 (4), pp. 538-539 (1977)
Hondzo, M.M., and Lyn, D., “Quantified small-scale turbulence inhibits the growth of a green alga”, Freshwater Biol., Vol. 41, pp. 51-61 (1999)
Hondzo, M.M., Kapur, A., and Lembi, C.A., “The effect of small-scale fluid motion on the green alga Scendesmus quadricauda.”, Hydrobiologia, Vol. 364, pp. 225-235 (1998)
Hu, D.L., Chen, B., and Bush, J.W.M., “The hydrodynamics of water strider locomotion”, Nature, Vol. 424, pp. 663-666, 7 August (2003)
Hu, D.L. and Bush, J.W.M., ”Meniscus-climbing insects ”, Nature, Vol. 437, pp. 733-736, 29 September (2005)
Jespersen, T.S., Thomassen, J.Q., Andersen, A., and Bohr, T., ”Vortex dynamics around a solid ripple in an oscillatory flow”, The European Physical Journal B, Vol. 38, pp. 127-138 (2004)
Joanidopoulos, K.D., and Marwan, W., “Specific behavioural responses triggered by identified mechanosensory receptor cells in the apical field of the giant rotifer Asplanchna Sieboldi”, The Journal of Experimental Biology, Vol. 201, pp. 169-177 (1998)
Keane, R.D., Adrian, R.J., and Zhang, Y., “Super resolution particle imaging velocimetry”, Measurements of Science technology, Vol. 6, pp. 754-768 (1995)
Kim, M.J., Beskok, A.K., and Kihm, K.D., “Electro-osmosis-driven micro-channel flow: A comparative study of microscopic particle image velocimetry measurements and numerical simulation”, Experiments in Fluids, Vol. 33, pp. 170-180 (2003)
Lazier, J.R.N., and Mann, K.H., “Turbulence and the diffusive layers around small organisms”, Deep Sea Res., Vol. 36, pp. 1721-1733 (1989)
Lighthill, J., “Glagellar Hydrodynamics”, The John von Neumann Lecture, SIAM Review, Vol. 18, pp. 160-230 (1976)
Lindken, R., Westerweel, J., and Wieneke, B., “Development of a self-Calibrating Stereo-μ-PIV system and its application to the three-dimenional flow in a T-shaped mixer”, 6th International Symposium on particle Image Velocimetry Pasadena (2005)
Liu, D., Garimella, S.V., and Wereley, S.T., “Infrared micro-particle image velocimetry in silicon-based microdivices”, Experiments in Fluids, Vol. 38, pp. 385-392 (2005)
MacIntyre, S., “Vertical mixing in a shallow, eutrophic lake : Possible consequences for the light climate of phytoplankton”, Limnol. Oceanogr, Vol. 38, pp. 798-817 (1993)
Meinhart, C.D., Wereley, S.T., and Santiago, J.G., “PIV measurement of a microchannel flow”, Experiments in Fluids, Vol. 27, pp. 414-419 (1999)
Mochizuki, O., ”Flow induced by swimming plankton”, ISFV13 and FLUVISU 12, Nice, France (2008)
Nagai, M., Oishi, M., Sakaki, N., Ducloux, O., Oshima, M., Asai, H. and Fujita, H. “Application of vorticella’s feeding mechanism as a micromixer-Characterization of vortices generated by cilia motion”, MEMS Tucson, AZ, USA, pp. 13-17 (2008)
Oviatt, C.A., “Effects of different mixing schedules on phytoplankton zooplankton and nutrients in marine microcosms”, Mar. Ecol. Prog. Ser., Vol. 4, pp. 57-67 (1981)
Peterman, R.M., and Bradford, M.J., “Wind speed and mortality rate of a marine fish, the northern anchovy (Engraulis mordax)”, Science, Vol. 235, pp. 354-355 (1987)
Ruiz, J., Garcia, C.M., and Rodriguez, J., “Sedimentation loss of phytoplankton cells from the mixed layer: effects of turbulence levels”, J. Plankton Res., Vol. 18, pp. 1727-1734 (1996)
Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J., and Adrian, R.J., ”A particle image Velocimetry system for microfluidics”, Experiments in Fluids, Vol. 25, pp. 316-319 (1998)
Santos-Medrano, G.E., Rico-Martinez, R., and Velazquez-Rojas, C.A., “Swimming speed and Reynolds numbers of eleven freshwater Rotifer species”, Hydrobiologia, Vol. 446, pp. 35–38 (2001)
Sugii Y., Okuda R.,, Okamoto K., and Madarame H., ”Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique”, Measurement Science and Technology, Vol. 16, pp. 1126-1130 (2005)
Sugii Y., Okuda R., and Okamoto K., “In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion”, Physiological Measurement, Vol. 23, pp. 403-416 (2002)
T. Nogrady, T., Wallace, R.L., and Snell, T.W., ” Guides to the identification of the Microinvertebrates of the Continental Waters of the World”, Rotifera, Vol. 1, SPB Academic Publishing, The Hague. (1993)
Vennemann, P., Kiger, K.T., Lindken, R., Groenendijk, B.C.W., Vos, S.S., Hagen, T.L.M., Ureem, N.T.C., Poelmann, R.E., Westerweel, J., and Hierck, B.P., “In vivo micro particle velocimetry measurements of blood-plasma in the embryonic avian heart”, Journal of Biomechanics, Vol. 39, pp. 1191-1200 (2006)
Videler, J.J., Stamhuis, E.J., Muller, U.K., and Duren, L.A.V., ”The Scaling and Structure of Aquatic Animal Wakes”, Integrative and Comparative Biology, Vol. 42, pp. 83-91 (2001)
Wu, T.Y., “Flagella and Cilia Hydrodynamics”, Biomechanics Symposium Am. Soc. Mech. Eng., New York (1977)
Yahng, J.S., Jeoung, S.C., Choi, D.S., Cho, D., Kim, J.H., Choi, H.M., and Paik, J.S., “Fabrication of microfluidic devices by using a femtosecond laser micromachining technique and μ-PIV studies on its fluid dynamics”, Journal of the Korean Physical Society, Vol. 47, No. 6, pp. 977-981 (2005)
Ting, S. C. and Yang, J. T., “Pitching stabilization via caudal fin-wave propagation in a forward-sinking parrot cichlid”, The Journal of Experimental Biology, Vol. 211, pp. 3147-3159 (2008)
郭子凡,“仿生彈性鰭及血鸚鵡魚推進原理之分析”,國立清華大學動力機械工程研究所碩士論文,民國 96年
陳政宏,”鯊魚裝與機器魚-淺談仿生減阻與仿生推進” 科學發展 365期,57~61頁 (2003)
陳政宏、李志揚“淺談流體中生物的推進方法” 科學發展專題文章 http://www.sciscape.org/articles/fish_swim/index.html (2000)
陳政宏,”仿生推進法” SciScape專題文章http://www.sciscape.org/articles/bio_propelling/ (2000)
陳政宏,”鯉魚如何躍龍門-水中生物的推進法” 科學發展 360期,48~51頁 (2002)
陳宣毅,“在細胞尺度下游泳、逃出能井、以及搜尋”,物理雙月刊,廿八卷四期 (2006)
蘇效賢,”仿生懸停下撲翼機構之流場與受力量測”,國立台灣大學應用力學研究所碩士論文,民國95年
黃啟銘,”仿生撲翼之受力與流場量測”,國立台灣大學應用力學研究所碩士論文,民國94年
邱鴻年,” 翅膀強度對撲翼飛行之設計探討”,國立台灣大學應用力學研究所碩士論文,民國95年
余政弘,“剛性翼以正弦函數為週期來模擬尾鰭運動之流場分析”,國立台灣大學應用力學研究所碩士論文,民國95年
張傑,” 仿龍蝦觸鬚之生物體操控裝置”,國立清華大學動力機械工程研究所碩士論文,民國 92年
梁象秋、方紀祖、楊和荃,”水生生物學(型態和分類) Aquatic Biology”,水產出版社 (1998)
任淑仙,”無脊椎動物學(上冊)”,淑馨出版社 (1995)
高德祐,“纖毛不對稱運動的模擬”,國立中央大學物理研究所碩士論文,民國 95年
李懷農,”微粒子顯像測速儀應用於血液流場的量測”,國立台灣大學應用力學研究所碩士論文,民國95年
陳明凱,“超音波照射下之草履蟲生物效應機制研究”,國立中山大學機械工程研究所碩士論文,民國90年
廖世華,” 仿生魚游之推進力與流場量測”,國立台灣大學應用力學研究所碩士論文,民國94年
謝政達,” 運用PIV與PTV量測技術於單一渦漩生成之研究”,國立台灣大學應用力學研究所碩士論文”,民國93年
http://webs.lander.edu/rsfox/invertebrates/philodina.html
http://www.nioo.knaw.nl/ppages/nhelmsing/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top