1.R. Reif, A. Fan, K. N. Chen, and S. Das, “Fabrication Technologies for Three-Dimensional Integrated Circuits,” in Proc. IEEE Int. Symp. Quality Electron. Design (IEEE, 2002), pp. 33–37.
2.C. Vaucher, “More Than Moore: Consequences for the PCB Industry in General and for Electrical Test in Particular,” in CircuiTree Cover story(2008).
3.S. Arkalgud, “A New Era: 3D TSV Interconnects,” presented at SEMATECH Symposium, Japan, 2007.
4.J. Walker, “TSV – First or Last, Fact or Fiction, Now or Future,” VP Research, Semiconductor Manufacturing, Gartner-Dataquest (market report, 2008).
5.D. Scansen,「你不知道的英特爾45nm製程技術秘辛」,電子工程專輯,技術文庫,製程/製造,2008年三月。
6.J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, "Laser Machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons," CIRP Annals - Manufacturing Technology 51, 531-550 (2002).
7.林三寶,雷射原理與應用(全華科技,1987)。
8.R. A. Lawes, A. S. Holmes, and F. N. Goodall, "The formation of moulds for 3D microstructures using excimer laser ablation," Microsystem Technologies 3, 17-19 (1996).
9.S. Asada, T. Sano, I. Miyamoto, "High-efficiency microdrilling of silicon wafer using excimer laser," Proc. SPIE 4088, 132-135 (2000).
10.M. Gower, "Excimer laser microfabrication and micromachining," in First International Symposium on Laser Precision Microfabrication (Omiya, Saitama, Japan, 2001), pp. 50-56.
11.A. Tseng, Y.-T. Chen, and K.-J. Ma, "Fabrication of high-aspect-ratio microstructures using excimer laser," Optics and Lasers in Engineering 41, 827-847 (2004).
12.王丕維、劉益銘、陳大同、趙崇禮、馬廣仁、陳春元,「以ArF 準分子雷射加工單晶矽表面之研究」,中國機械工程學會第二十一屆全國學術研討會論文集,(2004)。
13.D. Bhatt, K. Williams, D. A. Hutt, and P. P. Conway, "Process Optimisation and Characterization of Excimer Laser Drilling of Microvias in Glass," in Electronics Packaging Technology Conference, 2007. 9th (2007), pp. 196-201.
14.G. Kinsman, and W. W. Duley, "CO[sub 2] laser drilling of copper following excimer laser pretreatment," Applied Physics Letters 56, 996-998 (1990).
15.Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, "Nanoscale Rapid Melting and Crystallization of Semiconductor Thin Films," Nano Letters 5, 1924-1930 (2005).
16.G. Wysocki, J. Heitz, and D. Bauerle, "Near-field optical nanopatterning of crystalline silicon," Applied Physics Letters 84, 2025-2027 (2004).
17.Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy," Journal of Applied Physics 97, 104319-104312 (2005).
18.D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," Journal of Applied Physics 99, 044905-044911 (2006).
19.C. P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007).
20.J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-Free Beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
21.D. McGloin, and K. Dholakia, "Bessel beams: diffraction in a new light," Contemporary Physics 46, 15-28 (2005).
22.M. Kohno, and Y. Matsuoka, "Microfabrication and Drilling Using Diffraction-Free Pulsed Laser Beam Generated with Axicon Lens," JSME International Journal Series B Fluids and Thermal Engineering 47, 497-500 (2004).
23.David Milam, "Measurement at Lawrence Livermore National Laboratory of thresholds of samples in the Balzers round-robin laser-damage experiment," Appl. Opt. 23, 3762-3763 (1984).
24.L. Gallais, J.Y. Natoli and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Optics Express 10, 1465-1474 (2002).
25.H. Kessler, CVI Technical Optics, "Laser Damage Thresholds of Optical Coatings, UV-NIR," 2004.
26.J. Siegel, E. Matthias, K. Ettrich, and E. Welsch, "UV-laser ablation of ductile and brittle metal films," Applied Physics A: Materials Science & Processing 64, 213-218 (1997).
27.J. F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and K. I. Ueda, "Laser damage threshold of ceramic YAG," Jpn. J. Appl. Phys. Part 2 42, L1025-L1027 (2003).
28.S. M. J. Akhtar, D. Ristau, J. Ebert, and H. Welling, "Characterization of dielectric films and damage threshold at 1.064 mum," Physica Status Solidi (a) 115, 191-198 (1989).
29.N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, "Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics," Applied Physics A: Materials Science & Processing 94, 889-897 (2009).
30.D. H. Lowndes, G. E. Jellison, and R. F. Wood, "Time-resolved optical studies of silicon during nanosecond pulsed-laser irradiation," Physical Review B 26, 6747 (1982).
31.G. E. Jellison, D. H. Lowndes, D. N. Mashburn, and R. F. Wood, "Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam," Physical Review B 34, 2407 (1986).
32.J. O. Porteus, W. J. Choyke, and R. A. Hoffman, "Pulsed laser damage characteristics of vapor-deposited copper mirrors on silicon carbide substrates," Appl. Opt. 19, 451-454 (1980).
33.Vervaet, S. Siau, J. De Baets, and B. Manirambona, "Optimization of microvia-technology using excimer laser for build-up layer application in microelectronics," Applied Surface Science 252, 8243-8250 (2006).
34.H. Zheng, E. Gan, and G. C. Lim, "Investigation of laser via formation technology for the manufacturing of high density substrates," Optics and Lasers in Engineering 36, 355-371 (2001).
35.H. A. Bethe, "Theory of diffraction by small holes," Physical Review 66, 163-182 (1944).
36.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
37.T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
38.H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
39.D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Applied Physics Letters 77, 1569-1571 (2000).
40.H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
41.D.-Z. Lin, "Theory and Experiments of Plasmonic Optical Components for Nano Writer," Institute of Applied Mechanics (NTU, Taipei, 2007).
42.C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett 90, 061113 (2007).
43.方俊傑,「以連續數值孔徑模式陳述次波長圓環光學效應的適切性研究」,應用力學硏究所 (國立臺灣大學,台北,2008)。
44.楊宏智、林芳妃、黃欣怡,「超快雷射加工之研究與展望」,科儀新知第二十六卷第六期,20-26 (2008)。45.S. Khanna, Introduction to High Temperature Oxidation and Corrosion (ASM, 2002), pp. 98-101.
46.P. Kofstad, High-Temperature Oxidation of Metals (John Wiley & Sons, 1996).
47.劉培智,腐蝕的原因與防止(台灣電力公司電力研究所,1976)。