跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王筑顗
研究生(外文):Chu-Yi Wang
論文名稱:整合次波長圓環型孔洞與準分子雷射開發高深寬比光學鑽孔儀的先導性研究:以三維積體電路矽導通孔為應用平台
論文名稱(外文):Developing High Aspect Ratio Optical Drill by Integrating Sub-wavelength Annular Aperture and Excimer Laser: Use 3D-IC TSV as Application Platforms
指導教授:林世明林世明引用關係
指導教授(外文):Shiming Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:61
中文關鍵詞:次波長圓環型孔洞貝索光束雷射鑽孔深寬比三維積體電路
外文關鍵詞:Sub-wavelength Annular Aperture (SAA)Bessel beamlaser drill3D IC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:593
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文開發出一套整合次波長圓環型孔洞與KrF準分子雷射的光學鑽孔儀。由次波長圓環型孔洞可聚焦成突破繞射極限的微小光點與長焦深特性為出發點,以設計鈦、鋁之氧化物包覆其金屬之新型結構以及以矽薄膜為材料之次波長圓環型孔洞結構作為探討的方向,針對矽晶圓作為鑽孔對象進行雷射鑽孔。本論文中除了探討鈦與鋁金屬薄膜在烤箱氧化之情形以及實際以準分子雷射對不同材料進行雷射損壞閥值測試外,亦利用FDTD模擬找出上述材料在KrF準分子雷射248 nm波長下形成長焦深之點狀聚焦條件的最適膜厚,同時亦探討此結構半徑大小、波長、玻璃基板、表面電漿與膜厚對聚焦的影響,以此證明只需要改變圓環狹縫的膜厚,必能至少找出一組在遠場呈現點狀聚焦的似貝索光束,亦以能量計算及實際鑽孔測試說明即使不產生表面電漿使得穿透能量無額外增強,但由於此結構的聚焦光點極小提高能量密度仍能達到鑽孔目的。整合次波長圓環型孔洞與準分子雷射之鑽孔儀所鑽的孔洞,在重覆率10Hz、1000發脈衝下,可將矽晶圓鑽出孔徑小於1μm的孔洞,深度約140 nm,不到目前使用遠場雷射鑽孔最小孔徑的1/3,相當於進場雷射鑽孔的孔徑大小,但鑽孔深度確可達近場雷射的14倍以上。此研究對三維積體電路之矽導通孔提供一個更好的製程方式,可望鑽出高深寬比的孔洞,使之微小化並有更好的效能。
The main thrust of this thesis is to develop a high aspect ratio optical drill by integrating sub-wavelength annular aperture (SAA) and KrF excimer laser. The proposed new structure of SAA is made from metal, covered with metallic oxide by high temperature oxidation. This thesis discusses the effect of Ti/TiO2 and Al/Al2O3 composite layer and finds the optimal film thickness to be 110 nm and 200 nm when a 16μm diameter of SAA at wavelength of 248 nm is studied. Silicon thin film as the material of SAA is also discussed and the optimal film thickness is identified to be 100 nm. The SAA structure can render a quasi-Bessel beam and small focal spot with long depth of focus such that the designed structure can drill a high aspect ratio hole on silicon wafer by adjusting the energy of excimer laser. The drilled diameter of SAA is less than 1μm, which is about 30% of the smallest drilled diameter of present far-field laser driller. Moreover, the diameter is in close proximity to SNOM near-field driller, but the depth of the hole from SAA is more than 13 times to that from SNOM driller.
This Silicon wafer optical drill can be applied to 3D IC through-silicon via (TSV) , and hopefully can reduce the size, power consumption, and time delay of an IC chip. Through this technique, performance of 3D IC may be improved.
第1章 緒論 1
1.1 研究動機 1
1.2 研究背景 1
1.2.1 積體電路的發展趨勢 1
1.2.2 積體電路垂直導通孔 3
1.3 研究目的 5
1.4 論文架構 5
第2章 雷射鑽孔 6
2.1 一般高能雷射鑽孔 6
2.1.1 準分子奈秒雷射鑽孔 7
2.2 SNOM近場雷射鑽孔 8
2.3 無衍射光束(NON-DIFFRACTIVE BEAM)雷射鑽孔 9
2.3.1 圓錐狀透鏡(Axicon lens)產生無衍射光束鑽孔 10
2.3.2 本論文提出之次波長圓環型孔洞產生無衍射光束鑽孔 11
2.4 雷射損壞閥值 12
第3章 次波長圓環型孔洞結構 14
3.1 金屬次波長圓環型孔洞產生貝索光束 14
3.1.1 金屬異常穿透效應與表面電漿 14
3.1.2 由金屬圓環型光學頭產生零階與ㄧ階貝索光束 15
3.2 非金屬次波長圓環型孔洞產生無衍射光束 17
第4章 材料的選擇與雷射損壞閥值 18
4.1 材料的選擇 18
4.1.1 雷射損壞閥值 18
4.1.2 波長與穿透率 19
4.1.3 新型次波長環環型孔洞結構之設計 22
4.2 金屬氧化條件 24
4.2.1 氧化溫度與氧氣分壓 24
4.2.2 時間與氧化量之關係 27
4.3 雷射損壞閥值測試 29
4.3.1 雷射損壞閥值標準設定 29
4.3.2 測試結果與討論 29
第5章 模擬與聚焦參數分析 33
5.1 FDTD軟體模擬環境簡介 33
5.2 鈦、鋁、矽次波長圓環結構的參數決定 34
5.2.1 所需能量密度換算 35
5.3 不同參數的影響 35
5.3.1 圓環直徑 36
5.3.2 圓環波長、穿透率與膜厚 37
5.3.3 玻璃基材的影響 38
5.3.4 入射傾斜角度的影響 42
5.3.5 本模型中表面電漿的影響 43
第6章 實測結果與分析 45
6.1 系統架設 45
6.1.1 準分子雷射及其光路 45
6.1.2 鑽孔距離與支架設計 46
6.1.3 能量計與能量密度換算 48
6.2 實驗結果 49
6.2.1 鑽孔能量的影響 49
6.2.2 脈衝發數的影響 51
6.2.3 鈦/二氧化鈦、鋁/氧化鋁、矽之SAA鑽孔比較 53
6.3 與各種雷射鑽孔比較結果 54
第7章 結論與未來展望 55
7.1 結論 55
7.2 未來展望 56
參考文獻 58
1.R. Reif, A. Fan, K. N. Chen, and S. Das, “Fabrication Technologies for Three-Dimensional Integrated Circuits,” in Proc. IEEE Int. Symp. Quality Electron. Design (IEEE, 2002), pp. 33–37.
2.C. Vaucher, “More Than Moore: Consequences for the PCB Industry in General and for Electrical Test in Particular,” in CircuiTree Cover story(2008).
3.S. Arkalgud, “A New Era: 3D TSV Interconnects,” presented at SEMATECH Symposium, Japan, 2007.
4.J. Walker, “TSV – First or Last, Fact or Fiction, Now or Future,” VP Research, Semiconductor Manufacturing, Gartner-Dataquest (market report, 2008).
5.D. Scansen,「你不知道的英特爾45nm製程技術秘辛」,電子工程專輯,技術文庫,製程/製造,2008年三月。
6.J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, "Laser Machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons," CIRP Annals - Manufacturing Technology 51, 531-550 (2002).
7.林三寶,雷射原理與應用(全華科技,1987)。
8.R. A. Lawes, A. S. Holmes, and F. N. Goodall, "The formation of moulds for 3D microstructures using excimer laser ablation," Microsystem Technologies 3, 17-19 (1996).
9.S. Asada, T. Sano, I. Miyamoto, "High-efficiency microdrilling of silicon wafer using excimer laser," Proc. SPIE 4088, 132-135 (2000).
10.M. Gower, "Excimer laser microfabrication and micromachining," in First International Symposium on Laser Precision Microfabrication (Omiya, Saitama, Japan, 2001), pp. 50-56.
11.A. Tseng, Y.-T. Chen, and K.-J. Ma, "Fabrication of high-aspect-ratio microstructures using excimer laser," Optics and Lasers in Engineering 41, 827-847 (2004).
12.王丕維、劉益銘、陳大同、趙崇禮、馬廣仁、陳春元,「以ArF 準分子雷射加工單晶矽表面之研究」,中國機械工程學會第二十一屆全國學術研討會論文集,(2004)。
13.D. Bhatt, K. Williams, D. A. Hutt, and P. P. Conway, "Process Optimisation and Characterization of Excimer Laser Drilling of Microvias in Glass," in Electronics Packaging Technology Conference, 2007. 9th (2007), pp. 196-201.
14.G. Kinsman, and W. W. Duley, "CO[sub 2] laser drilling of copper following excimer laser pretreatment," Applied Physics Letters 56, 996-998 (1990).
15.Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, "Nanoscale Rapid Melting and Crystallization of Semiconductor Thin Films," Nano Letters 5, 1924-1930 (2005).
16.G. Wysocki, J. Heitz, and D. Bauerle, "Near-field optical nanopatterning of crystalline silicon," Applied Physics Letters 84, 2025-2027 (2004).
17.Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, "Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy," Journal of Applied Physics 97, 104319-104312 (2005).
18.D. J. Hwang, A. Chimmalgi, and C. P. Grigoropoulos, "Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes," Journal of Applied Physics 99, 044905-044911 (2006).
19.C. P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007).
20.J. Durnin, J. J. Miceli, and J. H. Eberly, "Diffraction-Free Beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
21.D. McGloin, and K. Dholakia, "Bessel beams: diffraction in a new light," Contemporary Physics 46, 15-28 (2005).
22.M. Kohno, and Y. Matsuoka, "Microfabrication and Drilling Using Diffraction-Free Pulsed Laser Beam Generated with Axicon Lens," JSME International Journal Series B Fluids and Thermal Engineering 47, 497-500 (2004).
23.David Milam, "Measurement at Lawrence Livermore National Laboratory of thresholds of samples in the Balzers round-robin laser-damage experiment," Appl. Opt. 23, 3762-3763 (1984).
24.L. Gallais, J.Y. Natoli and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Optics Express 10, 1465-1474 (2002).
25.H. Kessler, CVI Technical Optics, "Laser Damage Thresholds of Optical Coatings, UV-NIR," 2004.
26.J. Siegel, E. Matthias, K. Ettrich, and E. Welsch, "UV-laser ablation of ductile and brittle metal films," Applied Physics A: Materials Science & Processing 64, 213-218 (1997).
27.J. F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and K. I. Ueda, "Laser damage threshold of ceramic YAG," Jpn. J. Appl. Phys. Part 2 42, L1025-L1027 (2003).
28.S. M. J. Akhtar, D. Ristau, J. Ebert, and H. Welling, "Characterization of dielectric films and damage threshold at 1.064 mum," Physica Status Solidi (a) 115, 191-198 (1989).
29.N. Sanner, O. Utéza, B. Bussiere, G. Coustillier, A. Leray, T. Itina, and M. Sentis, "Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics," Applied Physics A: Materials Science & Processing 94, 889-897 (2009).
30.D. H. Lowndes, G. E. Jellison, and R. F. Wood, "Time-resolved optical studies of silicon during nanosecond pulsed-laser irradiation," Physical Review B 26, 6747 (1982).
31.G. E. Jellison, D. H. Lowndes, D. N. Mashburn, and R. F. Wood, "Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam," Physical Review B 34, 2407 (1986).
32.J. O. Porteus, W. J. Choyke, and R. A. Hoffman, "Pulsed laser damage characteristics of vapor-deposited copper mirrors on silicon carbide substrates," Appl. Opt. 19, 451-454 (1980).
33.Vervaet, S. Siau, J. De Baets, and B. Manirambona, "Optimization of microvia-technology using excimer laser for build-up layer application in microelectronics," Applied Surface Science 252, 8243-8250 (2006).
34.H. Zheng, E. Gan, and G. C. Lim, "Investigation of laser via formation technology for the manufacturing of high density substrates," Optics and Lasers in Engineering 36, 355-371 (2001).
35.H. A. Bethe, "Theory of diffraction by small holes," Physical Review 66, 163-182 (1944).
36.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
37.T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999).
38.H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
39.D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Applied Physics Letters 77, 1569-1571 (2000).
40.H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
41.D.-Z. Lin, "Theory and Experiments of Plasmonic Optical Components for Nano Writer," Institute of Applied Mechanics (NTU, Taipei, 2007).
42.C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett 90, 061113 (2007).
43.方俊傑,「以連續數值孔徑模式陳述次波長圓環光學效應的適切性研究」,應用力學硏究所 (國立臺灣大學,台北,2008)。
44.楊宏智、林芳妃、黃欣怡,「超快雷射加工之研究與展望」,科儀新知第二十六卷第六期,20-26 (2008)。
45.S. Khanna, Introduction to High Temperature Oxidation and Corrosion (ASM, 2002), pp. 98-101.
46.P. Kofstad, High-Temperature Oxidation of Metals (John Wiley & Sons, 1996).
47.劉培智,腐蝕的原因與防止(台灣電力公司電力研究所,1976)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top