|
[1]M. E. Curran, I. Splawski, K. W. Timothy, G. M. Vincent, E. D. Green, and M. T. Keating, "A Molecular-Basis for Cardiac-Arrhythmia - Herg Mutations Cause Long Qt Syndrome," Cell, vol. 80, pp. 795-803, 1995. [2]B. Fermini and A. A. Fossa, "The impact of drug-induced qt interval prolongation on drug discovery and development," Nature Reviews Drug Discovery, vol. 2, pp. 439-447, 2003. [3]J. Xu, Y. Chen, and M. Li, "High-throughput technologies for studying potassium channels - progresses and challenges," Drug Discovery Today: TARGETS, vol. 3, pp. 32-38, 2004. [4]M. Asmild, N. Oswald, K. M. Krzywkowski, S. Friis, R. B. Jacobsen, D. Reuter, R. Taboryski, J. Kutchinsky, R. K. Vestergaard, R. L. Schroder, C. B. Sorensen, M. Bech, M. P. G. Korsgaard, and N. J. Willumsen, "Upscaling and automation of electrophysiology: Toward high throughput screening in ion channel drug discovery," Receptors & Channels, vol. 9, pp. 49-58, 2003. [5]A. Lepple-Wienhues, K. Ferlinz, A. Seeger, and A. Schafer, "Flip the tip: An automated, high quality, cost-effective patch clamp screen," Receptors & Channels, vol. 9, pp. 13-17, 2003. [6]K. Schnizler, M. Kuster, C. Methfessel, and M. Fejtl, "The Roboocyte: Automated cDNA/mRNA injection and subsequent TEVC recording on Xenopus oocytes in 96-well microtiter plates," Receptors & Channels, vol. 9, pp. 41-48, 2003. [7]J. D. Trumbull, E. S. Maslana, D. G. McKenna, T. A. Nemcek, W. Niforatos, J. Y. Pan, A. S. Parihar, C. C. Shieh, J. A. Wilkins, C. A. Briggs, and D. Bertrand, "High throughput electrophysiology using a fully automated, multiplexed recording system," Receptors & Channels, vol. 9, pp. 19-28, 2003. [8]P. G. Kostyuk, O. A. Krishtal, and V. I. Pidoplichko, "Effect of Internal Fluoride and Phosphate on Membrane Currents during Intracellular Dialysis of Nerve-Cells," Nature, vol. 257, pp. 691-693, 1975. [9]J. Xu, X. B. Wang, B. Ensign, M. Li, L. Wu, A. Guia, and J. Q. Xu, "Ion-channel assay technologies: quo vadis?," Drug Discovery Today, vol. 6, pp. 1278-1287, 2001. [10]C. Wood, C. Williams, and G. J. Waldron, "Patch clamping by numbers," Drug Discovery Today, vol. 9, pp. 434-441, 2004. [11]J. Dunlop, M. Bowlby, R. Peri, D. Vasilyev, and R. Arias, "High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology," Nature Reviews Drug Discovery, vol. 7, pp. 358-368, 2008. [12]R. Pantoja, J. M. Nagarah, D. M. Starace, N. A. Melosh, R. Blunck, F. Bezanilla, and J. R. Heath, "Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics," Biosensors & Bioelectronics, vol. 20, pp. 509-517, 2004. [13]J. Kutchinsky, S. Friis, M. Asmild, R. Taboryski, S. Pedersen, R. K. Vestergaard, R. B. Jacobsen, K. Krzywkowski, R. L. Schroder, T. Ljungstrom, N. Helix, C. B. Sorensen, M. Bech, and N. J. Willumsen, "Characterization of potassium channel modulators with QPatch (TM) automated patch-clamp technology: System characteristics and performance," Assay and Drug Development Technologies, vol. 1, pp. 685-693, 2003. [14]J. C. Curtis, K. Baldwin, B. J. Dworak, J. T. M. Stevenson, E. Delivopoulos, N. K. MacLeod, and A. F. Murray, "Seal formation in silicon planar patch-clamp microstructures," Journal of Microelectromechanical Systems, vol. 17, pp. 974-983, 2008. [15]N. Fertig, R. H. Blick, and J. C. Behrends, "Whole cell patch clamp recording performed on a planar glass chip," Biophysical Journal, vol. 82, pp. 3056-3062, 2002. [16]A. Bruggemann, M. George, M. Klau, M. Beckler, J. Steindl, J. C. Behrends, and N. Fertig, "High quality ion channel analysis on a chip with the NPC (c) technology," Assay and Drug Development Technologies, vol. 1, pp. 665-673, 2003. [17]H. M. Tao, D. S. Ana, A. Guia, M. X. Huang, J. Ligutti, G. Walker, K. Sithiphong, F. Chan, G. L. Tao, Z. Zozulya, S. Saya, R. Phimmachack, C. Sie, J. Yuan, L. Wu, J. Xu, and A. Ghetti, "Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds," Assay and Drug Development Technologies, vol. 2, pp. 497-506, 2004. [18]K. G. Klemic, J. F. Klemic, and F. J. Sigworth, "An air-molding technique for fabricating PDMS planar patch-clamp electrodes," Pflugers Archiv-European Journal of Physiology, vol. 449, pp. 564-572, 2005. [19]K. Schroeder, B. Neagle, D. J. Trezise, and J. Worley, "IonWorks (TM) HT: A new high-throughput electrophysiology measurement platform," Journal of Biomolecular Screening, vol. 8, pp. 50-64, 2003. [20]T. Lehnert, M. A. M. Gijs, R. Netzer, and U. Bischoff, "Realization of hollow SiO2 micronozzles for electrical measurements on living cells," Applied Physics Letters, vol. 81, pp. 5063-5065, 2002. [21]A. Stett, C. Burkhardt, U. Weber, P. van Stiphout, and T. Knott, "Cytocentering: A novel technique enabling automated cell-by-cell patch clamping with the CytoPatch (TM) chip," Receptors & Channels, vol. 9, pp. 59-66, 2003. [22]C. Ionescu-Zanetti, R. M. Shaw, J. G. Seo, Y. N. Jan, L. Y. Jan, and L. P. Lee, "Mammalian electrophysiology on a microfluidic platform," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 9112-9117, 2005. [23]A. Y. Lau, P. J. Hung, A. R. Wu, and L. P. Lee, "Open-access microfluidic patch-clamp array with raised lateral cell trapping sites," Lab on a Chip, vol. 6, pp. 1510-1515, 2006. [24]C. C. Chen and A. Folch, "A high-performance elastomeric patch clamp chip," Lab on a Chip, vol. 6, pp. 1338-1345, 2006. [25]W. L. Ong, K. C. Tang, A. Agarwal, R. Nagarajan, L. W. Luo, and L. Yobas, "Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip," Lab on a Chip, vol. 7, pp. 1357-1366, 2007. [26]T. Sordel, S. Garnier-Raveaud, F. Sauter, C. Pudda, F. Marcel, M. De Waard, C. Arnoult, M. Vivaudou, F. Chatelain, and N. Picollet-D''hahan, "Hourglass SiO2 coating increases the performance of planar patch-clamp," Journal of Biotechnology, vol. 125, pp. 142-154, 2006. [27]T. Lehnert, D. M. T. Nguyen, L. Baldi, and M. A. M. Gijs, "Glass reflow on 3-dimensional micro-apertures for electrophysiological measurements on-chip," Microfluidics and Nanofluidics, vol. 3, pp. 109-117, 2007. [28]J. Xu, A. Guia, D. Rothwarf, M. X. Huang, K. Sithiphong, J. Ouang, G. L. Tao, X. B. Wang, and L. Wu, "A benchmark study with SealChip (TM) planar patch-clamp technology," Assay and Drug Development Technologies, vol. 1, pp. 675-684, 2003. [29]X. H. Li, K. G. Klemic, M. A. Reed, and F. J. Sigworth, "Microfluidic system for planar patch clamp electrode arrays," Nano Letters, vol. 6, pp. 815-819, 2006. [30]F. Lin, W. Saadi, S. W. Rhee, S. J. Wang, S. Mittal, and N. L. Jeon, "Generation of dynamic temporal and spatial concentration gradients using microfluidic devices," Lab on a Chip, vol. 4, pp. 164-167, 2004. [31]K. Campbell and A. Groisman, "Generation of complex concentration profiles in microchannels in a logarithmically small number of steps," Lab on a Chip, vol. 7, pp. 264-272, 2007. [32]K. Lee, C. Kim, B. Ahn, R. Panchapakesan, A. R. Full, L. Nordee, J. Y. Kang, and K. W. Oh, "Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators," Lab on a Chip, vol. 9, pp. 709-717, 2009. [33]D. Irimia, D. A. Geba, and M. Toner, "Universal microfluidic gradient generator," Analytical Chemistry, vol. 78, pp. 3472-3477, 2006. [34]J. A. Sethian, Level set methods and fast marching methods : Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd ed. Cambridge: Cambridge University Press, 1999. [35]J. F. Ready, Industrial applications of lasers. USA: Academic Press, 1997. [36]S. Yoshioka and T. Miyazaki, "Numerical Prediction of Hole Shape in Energy Beam Drilling of Metals," Precision Engineering-Journal of the American Society for Precision Engineering, vol. 6, pp. 181-186, 1984. [37]O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, "Improved Patch-Clamp Techniques for High-Resolution Current Recording from Cells and Cell-Free Membrane Patches," Pflugers Archiv-European Journal of Physiology, vol. 391, pp. 85-100, 1981. [38]A. Bruggemann, S. Stoelzle, M. George, J. C. Behrends, and N. Fertig, "Microchip technology for automated and parallel patch-clamp recording," Small, vol. 2, pp. 840-846, 2006. [39]N. Helix, D. Strobaek, B. H. Dahl, and P. Christophersen, "Inhibition of the endogenous volume-regulated anion channel (VRAC) in HEK293 cells by acidic di-aryl-ureas," Journal of Membrane Biology, vol. 196, pp. 83-94, 2003. [40]G. Y. Zhu, Y. Zhang, H. X. Xu, and C. Jiang, "Identification of endogenous outward currents in the human embryonic kidney (HEK 293) cell line," Journal of Neuroscience Methods, vol. 81, pp. 73-83, 1998. [41]B. Jiang, X. F. Sun, K. Cao, and R. Wang, "Endogenous K-V channels in human embryonic kidney (HEK-293) cells," Molecular and Cellular Biochemistry, vol. 238, pp. 69-79, 2002. [42]G. Avila, A. Sandoval, and R. Felix, "Intramembrane charge movement associated with endogenous K+ channel activity in HEK-293 cells," Cellular and Molecular Neurobiology, vol. 24, pp. 317-330, 2004. [43]R. A. Levis and J. L. Rae, "The Use of Quartz Patch Pipettes for Low-Noise Single-Channel Recording," Biophysical Journal, vol. 65, pp. 1666-1677, 1993. [44]J. Seo, C. Ionescu-Zanetti, J. Diamond, R. Lal, and L. P. Lee, "Integrated multiple patch-clamp array chip via lateral cell trapping junctions," Applied Physics Letters, vol. 84, pp. 1973-1975, 2004. [45]A. Finkel, A. Wittel, N. Yang, S. Handran, J. Hughes, and J. Costantin, "Population patch clamp improves data consistency and success rates in the measurement of ionic currents," Journal of Biomolecular Screening, vol. 11, pp. 488-496, 2006. [46]D. B. Weibel, M. Kruithof, S. Potenta, S. K. Sia, A. Lee, and G. M. Whitesides, "Torque-actuated valves for microfluidics," Analytical Chemistry, vol. 77, pp. 4726-4733, 2005. [47]S. E. Hulme, S. S. Shevkoplyas, and G. M. Whitesides, "Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices," Lab on a Chip, vol. 9, pp. 79-86, 2009.
|