跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李曜全
研究生(外文):Yao-Chuan Lee
論文名稱:可控制粒徑分布型態微、奈米氣懸微粒產生技術之研究
論文名稱(外文):Technique for Aerosol Generation with Controllable Size Distribution (Nanometer and Micrometer)
指導教授:鄭福田鄭福田引用關係
指導教授(外文):Fu-Tien Jeng
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:粒徑分布微粒產生奈米微粒微米微粒超音波霧化器靜電噴霧氣膠產生器蒸發/冷凝
外文關鍵詞:Size distributionaerosol generationnanoparticleultrasonic atomizerelectrosprayevaporation/condensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現有之氣懸微粒產生技術中,已有一些單一粒徑微粒之產生技術及特定分布型態之微粒產生技術,然而由於各類型污染源所產生及大氣環境中奈米氣懸微粒之粒徑分布隨其相應之環境事件,各有不同之特性。由於目前並無製造可控制粒徑分布型態奈米氣懸微粒以模擬各類型污染源或大氣環境奈米微粒分布型態之微粒產生技術,本研究主要目標即在研發一套能夠控制粒徑分布型態之微米、奈米粒徑微粒產生系統,以提供各種氣懸微粒研究所需穩定之測試微粒來源及相關研究之推展。
本研究利用超音波霧化器、靜電噴霧氣膠產生器為液體霧化式單一粒徑奈米微粒產生設備之特性,將其液體進料系統由目前單一進料式改裝為兩個或兩個以上可程式控制之混合進料系統,使進入氣膠產生器之液體濃度與其他性質在測試中可以隨時改變,因此噴霧所產生之液滴為濃度不同之單一粒徑液滴,其後液滴乾燥後即留下具備多重粒徑分布型態之奈米微粒。儀器組裝測試完成後,藉由掌握各項參數對粒徑大小及分布型態之影響,即可控制各項參數以調整產生與代表樣品具備類似大小與分布型態之模擬樣品。
本研究並另以蒸發/冷凝法測試奈米微粒產生系統,奈米微粒產生系統主要包含兩台串聯之高溫爐,第一台之作用為放置金屬粉末經揮發後於惰性氣體中形成均質核凝結(Homogeneous Nucleation),凝結而成高濃度之微粒經過碰撞時,微粒會膠凝(agglomeration)形成大的鍊狀物或由許多粒子凝聚成膠團,此時將樣品再送入第二台高溫爐,微粒經過高溫燒結(sintering)熔融為表面積較小之近圓球形外形,最終形狀與表面積則取決於燒結之溫度。本研究採用熔點較低的銀(Ag)作為微粒產生物種。微粒經過串聯之高溫爐進行均質核凝結與燒結後,送入採樣管內同時進行TEM樣品採集與氣膠粒徑分析。
本研究所建立液體霧化式可控制粒徑分布之微米、奈米微粒產生系統,系統具備簡易之控制條件、系統穩定性優良,微粒之粒徑除可在3-10秒的短時間變化外,更可利用這種方法調配產生特定粒徑分布型態之微粒,具備開發商品之潛力。以本系統產生之微粒可應用於暴露腔或濾材過濾特性測試或其他細胞毒理測試。
The purpose of this study is to develop an aerosol generating system that can produce particles of micrometer and nanometer size in a convenient and efficient way. This system is comprised of an atomizer (ultrasonic for micrometer-size and electrospray for nanoparticle) and a program-controlled solute feeding unit with different solute concentrations. Both the aerosol concentration and size distribution pattern can be easily controlled and reproduced in the developed system. While the initial size of droplets generated from atomizer may remain unchanged, the size of residual dry aerosols was controlled by the solute concentration adjusted by the mixing ratio of solute and water. In addition, solute concentration could be alternatively adjusted in any cyclic way to provide particles with relatively monodisperse, bimodal, varying size as well as skew distribution to meet requirements in various applications.
Another feasible generating system was developed to generate particles of 5 to 100 nanometers in diameter to simulate the samples from various environment sources by a evaporation/condensation type aerosol generator of electrically heated ceramic tube generating system. The generated nanoparticles of different sintering condition could be used in the toxicity study of different particle size and surface area.
目 錄
口試委員會審定書………………………..………………………… i
誌謝……………………………………………..……………………. ii
中文摘要…………………………………………..………………… iii
英文摘要…………………………………………..…………………. iv
第一章 前言…………………………………………..…………….. 1
1.1研究緣起…………………….……………..………………… 1
1.2研究目的...…………….……………………..………………. 1
第二章 文獻回顧………….………………………..………………. 2
2.1氣懸微粒之粒徑分布型態…………………..….…………… 2
2.2氣懸微粒產生技術與其特性比較……………..….………… 7
2.3超音波霧化法之微粒產生機制及影響因子……..………..… 14
2.4電噴霧法之微粒產生機制及影響因子……………..…..…… 15
2.5蒸發/冷凝法之微粒產生機制及影響因子…..…….....……… 17
第三章 研究方法………….…………….………………..…………. 24
3.1研究架構.…………………………….…………..…………… 24
3.2粒徑調控方法設計.…………………….………..…………… 26
3.3實驗參數設定.……………………….………..……………… 26
3.4實驗系統與設備.…………….………………..……………… 27
第四章 結果與討論……….………………………………………….32
4.1微米粒徑微粒之產生.…………………………………………32
4.2電噴霧法(Electrospray)奈米粒徑微粒之產生..………………43
4.3高溫爐揮發法奈米粒徑微粒之產生.…………………………50
第五章 結論與建議……….………………………………………….65
5.1結論………………….…………………………………………65
5.2建議……………………………….……………………………66

參考文獻……………………………………………………….….……67
Allen, A.G., Grenfell, J.L., Harrison, R.M., James J., 1999. Nanoparticle formation in airmass: contrasting behaviour of the open ocean and coastal environment, Atmos. Res. 51, 1-14.

Backman, U., Jokiniemi, J.K., Auvinen, A., Lehtinen, K.E.J., 2002. The effect of boundary conditions on gas-phase synthesized silver nanoparticles. J. Nanopart. Res. 4, 325-335.

Chen, D.R., Pui, D.Y.H., 1995. Electrospraying of conducting liquids for monodisperse aerosol generating in the 4 nm to 1.8 um diameter range, Int. Conf. Aerosol Sci. Tech.

Damour, T.M., Ehrman, S.H., Karlsson, M.N.A., Karlsson, L.S., Deppert, K., 2005. Experimental evidence for nonuniform flow in a horizontal evaporation/condensation aerosol generator. Aerosol Sci. Tech. 39, 444–451.

De La Mora, J.F., Loscertales, I.G., 1994. Current emitted by highly conducting Taylor cones. J. Fluid Mech. 260, 155-184.

Ferin, J., Oberdorster, G., Soderolm, S.C., Gelein, R., 1991. Pulmonary tissue access of ultrafine particles. J. Aerosol Med. 4, 57-68.

Gomez, A., Tang, K., 1994. Charge and fission of droplets in electrostatics sprays, Phys. Fluids 6, 404-414.

Hegg, D.; Larson, T.; Yuen, P.F., 1993. A therotical study of the effect of relative humidity on light scattering by tropospheric aerosols, J. Geophys. Res-Atmos. 98, 18435-18439.

Hertel, O.; Christensen, J.; Hov, O., 1994. Modelling of the end products of the chemical decomposition of DMS in the marine boundary layer. Atmos. Environ. 28, 2431-2449.

Hinds, W.C., 1999. Aerosol Technology. John Wiley, New York.

Jung, J.H., Oh, H.C., Ji, J.H., Kim, S.S., 2006. Metal nanoparticle generation using a small ceramic heater with a local heating area. J. Aerosol Sci. 37, 1662-1670.

Karlsson, M.N.A., Depper, K., Karlsson, L.S., Magnusson, M.H., Malm, J.O., Srinivasan, N.S., 2005. Compaction of agglomerates of aerosol nanoparticles: A compilation of experimental data. J. Nanopart. Res. 7, 43-49.

Ku, B.K., Maynard, A.D., 2006. Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J. Aerosol Sci. 37, 452-470.

Meesters, G.M.H., Vercoulen, P.H., Marunissen, W., Scarlett, B., 1992. Generation of micron-sized droplets from the Taylor cone, J. Aerosol Sci. 23, 37-49.

Nakaso, K., Shimada, M., Okuyama, K., Deppert, K., 2002. Evaluation of the change in the morphology of gold nanoparticles during sintering. J. Aerosol Sci. 33, 1061–1074.

Oberdorster, G., Gelein, R., Ferin, J., Weiss, B., 1995. Association of particulate air pollution and acute mortality: involvement of ultrafine particles. Inhal. Toxicol. 71, 111-124.

Peters, A., Wichmann, E., Tuch, T., Heinrich, J., Heyder, J., 1997. Respiratory effects are associated with the number of ultrafine particles, Amer. J. Respir. Crit. Care Med. 155, 1376-1383.

Pilacinski, W., Ruuskanen, J., Chen, C.C., Pan, M.J., Willeke, K., 1990. Size-fractionating aerosol generator. Aerosol Sci. Tech. 13, 450-458.

Qian, Z.Q., Siegmann, K., Keller, A., Matter, U., Scherrer, L., Siegmann, H.C., 2000. Nanoparticle air pollution in major cities and its origin, Atmos. Environ. 34, 443-451

Reist, P.C., 1993. Aerosol Science and Technology, McGraw-hill, Inc.

Rosell-Llompart, J., De La Mora, J. F., 1994. Generation of monodisperse droplets 0.3 to 4 μm in diameter from electrified cone-jets of highly conducting and viscous liquids. J. Aerosol Sci. 25, 1093-1119.

Rulison, A. J., Flagan, R. C., 1994. Electrospray atomization of electrolytic solutions. J. Colloid Interface Sci. 167, 135-145

Savoie, D. L., Prospero, J. M., 1982. Particle size distribution of nitrate and sulfate in the marine atmosphere. Geophys. Res. Lett. 9, 1207-1210.

Scheibel, H.G., Porstendorfer, J., 1983. Generation of monodisperse Ag- and NaCl- aerosol with particle diameters between 2 and 300 nm. J. Aerosol Sci. 14, 113-126.

Seto, T., Hirota, A., Fujimoto, T., 1997. Sintering of polydisperse nanometer-sized agglomerates. Aerosol Sci. Tech. 27, 422-438.

Shi, J.P., Evans, D.E., Khan, A.A., Harrison, R.M., 2001. Sources and concentration of nanoparticles (< 10 nm diameter) in the urban atmosphere. Atmos. Environ. 35, 1193-1202.
Singh, Y., Javier, J.R.N., Ehrman, S.H., Magnusson, M.H., Deppert, K., 2002. Approaches to increasing yield in evaporation/condensation nanoparticle generation. J.Aerosol Sci. 33, 1309-1325.

Tobias, H.J., Beving, D.E., Ziemann, P. J., Sakurai, H., Zuk, M., McMurry, P.H., Zarling, D., Waytulonis, R., Kittelson, D.B., 2001. Chemical analysis of diesel engine nanoparticles using a nano-DMA/ thermal desorption particle beam mass spectrometer. Environ. Sci. Technol. 35, 2233-2243.

Wegner, K., Walker, B., Tsantilis, S., Pratsinis, S.E., 2002. Design of metal nanoparticle synthesis by vapor flow condensation. Chem. Eng. Sci. 57, 1753-1762.

Wen, S., Mao, X., Greif, R., Russoa, R.E., 2007. Experimental and theoretical studies of particle generation after laser ablation of copper with a background gas at atmospheric pressure. J. Appl. Phys. 101, 123105.

Whitby, K. T., Sverdrup, G. M., 1980. California aerosols: their physical and chemical characteristics. In: Hidy, G. M.; Mueller, P. K.; Grosjean, D.; Appel, B. R.; Wesolowski, J. J., eds. The character and origins of smog aerosols: a digest of results from the California Aerosol Characterization Experiment (ACHEX). Advances in environmental science and technology: v. 9, 477-517. John Wiley, New York.

Woo, K.S., Chen, D.R., Pui D.Y.H., McMurry P.H., 2001. Measurement of Atlanta aerosol size distribution: observations of ultrafine particle events, Aerosol Sci. Tech. 34, 75-87.

Yang, G., Biswas, P., 1997. Study of the sintering of nanosized titania agglomerates in flames using in situ light scattering measurement. Aerosol Sci. Tech. 27, 507–521.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊