跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 22:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王宜婷
研究生(外文):Yi-Ting Wang
論文名稱:結合地理資訊系統與擴散模式評估半導體廠無機酸排放對周遭空氣品質之影響
論文名稱(外文):Evaluation of the impact of inorganic acids on air quality emitted from the semiconductor manufacturing using dispersion modeling and geographic information system
指導教授:陳家揚陳家揚引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:91
中文關鍵詞:ISCST3地理資訊系統半導體無機酸環境衝擊
外文關鍵詞:ISCST3geographic information systemsemiconductor manufacturingInorganic acidsenvironmental impact
相關次數:
  • 被引用被引用:5
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體業對台灣經濟發展有重大貢獻,但是由於製程中大量使用各類無機酸原物料,經由工廠排放後,可能對於高科技產業園區周邊居民產生衝擊。本研究蒐集1999年起環保署規定半導體業需申報之無機酸原物料使用量,包括硫酸、硝酸、氫氟酸及鹽酸,以此了解近年來半導體業原物料使用趨勢,並利用地理資訊系統 (Geographic Information System,GIS)及空氣污染擴散模式(Industrial Source Complex Short Term 3rd edition,ISCST3)評估半導體業排放無機酸對當地村里潛在污染區域及影響程度,利用排放係數推估無機酸排放量進行空氣污染擴散模擬,並與周邊環境實測對照比較,提出大氣中無機酸隨季節變化之污染源濃度分佈等資訊。
資料顯示園區內污染源分佈集中,且硫酸在無機酸原物料使用屬最大量,其次為氫氟酸、鹽酸及硝酸,且本研究結果發現2004–2006年無機酸模擬季平均擴散濃度有逐年遞增趨勢。另污染分佈狀況受季節及環境因素影響變化大,以2006年為例,短時間內大氣中硫酸液滴於第二期及第三期區域會有較高模擬濃度,如雙溪村、高峰里、金山里各季最大日模擬濃度分別介於1.40–1.60 µg/m3、1.03–1.31 µg/m3和0.82–1.277 µg/m3。此外,周界六測站平均監測值皆遠高於模擬值,可能源於無法完全掌握其他逸散源的污染貢獻,故其他五測站歷年各無機酸平均模擬值與實測值之R2介於0.17–0.71 (排除污水廠測點),尤其硫酸液滴(R2=0.71)具有良好的相關性,推測園區內半導體業污染源排放,可能影響園區周界大氣環境中無機酸污染濃度。此外,園區下風區域有較高模擬濃度分佈,但該處僅設置一監測站可供比較,顯示目前對於高污染濃度分佈的資訊不足,有必要檢討監測站分佈位置。
年平均模擬值最高值出現於高峰里(0.114 µg/m3)和金山里(0.11 µg/m3),雖其值均未超過美國加州環境衛生健康評估中心列出之硫酸慢性暴露標準(1 µg/m3),但仍須留意相關半導體產業運作對周邊環境的衝擊,並注意四季無機酸於周邊大氣環境中污染濃度分佈,以降低污染物對易感族群的衝擊,本研究顯示運用大氣擴散模式及地理資訊系統可推估工廠污染排放對於週邊環境之影響。
Semiconductor manufacturing industries contribute a lot to the economic growth in Taiwan. However, the semiconductor manufacturing processes use a large amount of inorganic acids, such as sulfuric acid, nitric acid, hydrogen fluoride, and hydrogen chloride. The emission of these acids from the industries may impact the health of local residents near the high-tech park. The chemical usage of H2SO4, HNO3, HF and HCl by the semiconductor manufacturing industries was collected since 1999, which was the year that the industry has to report their use amount required by the regulations of air pollution. We evaluate the potential impact of inorganic acids emitted from the semiconductor manufacturing on air quality in the peripheral regions using air dispersion model (Industrial Source Complex Short Term, ISCST3) and geographic information system (GIS) in this study.the emission rates of the acids used in the ISCST3 were estimated based on the chemical use multiplied by the emission factor from literatures. Furthermore, the simulated values obtained from the air dispersion model were compared with measured concentrations from the air quality monitoring stations. The seasonal variations of acid concentrations in the air were discussed as well.
There is a high density emitted stacks in the high-tech park. H2SO4 is the most used acid, followed by HF, HCl and HNO3. The simulated quarterly average concentrations of inorganic acids were increased from 2004 to 2006. There were seasonal variations in the concentrations of acids and their distribution patterns. For example, the simulated levels of H2SO4 in the year of 2006 were higher at the second and the third quarters than these at the first and the fourth quarter in the short-term simulation. The maximum average daily concentration of H2SO4 in the villages of Shuangsi, Gaofong, and Jinshan were 1.40–1.60 µg/m3, 1.03–1.31 µg/m3, 0.82–1.277 µg/m3, respectively. The simulated levels were lower than those measured at monitoring stations; the main cause would bethat not all emission sources were included., such as the waste water treatment plant The multiple regression correlation coefficients (R2) of the simulated and monitored data were ranged from 0.17 to 0.71, H2SO4 (R2=0.71) has the best correlation. The emission of these acids from the industries may more or less impact the air quality nearby the semiconductor manufacturing industries. Besides, only one monitoring site is located at downwind side, and the levels of acids on this site were higher either on measured data or simulated results, indicating that more monitoring sites would be needed at potenitally polluted area.
The maximum yearly average concentrations of H2SO4 were at Gaofong and Jinshan, which were 0.114 µg/m3 and 0.11 µg/m3, respectively, at the year of 2006. Although the averaged simulated concentrations were lower than the chronic reference exposure levels (cRELs) set at 1 µg/m3 by the Office of Environmental Health Hazard Assessment (OEHHA),, state of California, USA, it is still a concern on the health impact on susceptible groups. This study demonstrated that the use of an air dispersion model coupled with the GIS can access the potential influences of acid emissions on the air quality from the industries.
誌謝 I
摘要 II
Abstract III
目錄 V
表目錄 VII
圖目錄 VIII
第一章、前言 1
1-1研究背景 1
1-2研究目的 2
第二章、文獻探討 5
2-1 半導體業污染物之種類及其潛在危害分析 5
2-2 新竹科學園區環境調查及相關法規 13
2-2-1 新竹科學工業園區歷來各環境介質調查研究 13
2-2-2 半導體業相關空氣污染相關法規 16
2-3污染源排放量推估 20
2-4 大氣擴散模式分析方法及其應用 22
2-5 地理資訊系統應用於環境污染之研究 24
第三章、材料與方法 26
3-1 研究架構 26
3-2 推估排放量 28
3-3 大氣污染擴散模式 29
3-3-1 模式假設及基本數學式 29
3-3-2 受體資料 30
3-3-3 排放源資料 31
3-3-4 氣象資料 32
3-4周邊環境實測 33
3-5 地理資訊系統 36
第四章、結果與討論 38
4-1 無機酸歷年使用量及排放量推估 38
4-2 空氣污染擴散模擬結果 42
4-3 模式模擬與環境實測值比較污染趨勢 53
4-4 評估衝擊區域 60
第五章、結論與建議 63
參考文獻 64
附錄一 半導體公司各季營業額與無機酸原物料使用量原始資料 68
附錄二 初估原物料使用量與營業額關係 69
附錄三 ISCST3擴散模式原始輸入參數設定 75
附錄四 環境監測檢出數據 81
附錄五 2004∼2005年無機酸模擬 83

表目錄
表2-1 半導體晶圓製造所產生之廢氣種類與空氣污染物成份 9
表2-2 2001年新竹科學工業園區半導體以及光電業無機酸控制前後污染排放量 10
表2-3 各種無機酸鹼標準檢測方法及半導體業排放濃度範圍 10
表2-4 半導體製程中常用之酸液種類與慢性健康危害 11
表2-5 半導體製程中常用之溶劑與及其潛在健康危害 12
表2-6 半導體製造業空氣污染排放標準之原物料使用量申報規定 17
表2-7 半導體製造業空氣污染管制之控制設備標準 17
表2-8 光電業空氣污染管制之控制設備標準 18
表2-9 固定污染源空氣污染物排放標準 19
表3-1 半導體業以及光電業使用無機酸排放係數 28
表3-2 ISCST3模式氣象參數及資料來源 32
表3-3 周邊環境相關圖層蒐集列表 37
表4-1 半導體廠各無機酸單廠原物料使用量a及排放量推估 40
表4-2 2004∼2006年無機酸模擬最高季平均濃度結果(μg/m3) 45
表4-3 新竹科學園區鄰近週邊主要村里2006年人口密度 61
表4-4 新竹科學園區鄰近村里2006年各季平均模擬濃度 62


圖目錄
圖1-1 新竹科學園區開發期程及其範圍 3
圖1-2 新竹科學園區歷年六大產業入園廠家數 3
圖1-3 六大產業年度營業額歷年成長趨勢(西元1986~2006年) 4
圖3-1 新竹科學工業園區周邊環境污染趨勢研究架構圖 27
圖3-2 模式模擬範圍涵括新竹縣及新竹市 30
圖3-3 2004∼2006年間新竹科學工業園區週界六地點空氣品質監測資料 35
圖4-1 半導體單廠2004∼2007年無機酸原物料年使用量幾何平均值 41
圖4-2 半導體單廠2004∼2007年無機酸污染物年幾何平均排放量推估值 41
圖4-3 2006年氫氟酸排放源分佈以及最大小時污染濃度 46
圖4-4 2006年硫酸液滴排放源分佈以及最大小時污染濃度 46
圖4-5 2006年硝酸排放源分佈以及最大小時污染濃度 47
圖4-6 2006年鹽酸排放源分佈以及最大小時污染濃度 47
圖4-7 新竹科學工業園區各廠氫氟酸2006年排放源分佈及各季污染分佈圖 48
圖4-8 新竹科學工業園區各廠硫酸液滴2006年排放源分佈及各季污染分佈圖 49
圖4-9 新竹科學工業園區各廠硝酸2006年排放源分佈及各季污染分佈圖 50
圖4-10 新竹科學工業園區各廠鹽酸2006年排放源分佈及各季污染分佈圖 51
圖4-11 2003~2006年新竹氣象測站四季平均風花圖 52
圖4-12 新竹科學工業園區周邊地形圖 52
圖4-13 氫氟酸2006年排放源分佈(圖a)以及2004–2006年平均污染模擬濃度與監測值(圖b) 56
圖4-14 硫酸液滴2006年排放源分佈(圖a)以及2004–2006年平均污染模擬濃度與監測值 57
圖4-15 硝酸2006年排放源分佈(圖a)以及2004–2006年平均污染模擬濃度與監測值 58
圖4-16 鹽酸2006年排放源分佈(圖a)以及2004–2006年平均污染模擬濃度與監測值 59
1.科學工業園區管理局. http://wwww.sipa.gov.tw/WEB/Jsp/Page/frame2.jsp?thisRootID=147 Accessed 2008 October.14.
2.行政院環境保護署. 半導體製造業空氣污染管制及排放標準. 1999年4月7日修正發布.
3.蘇茂豐. 國內半導體製造業及光電業之產業現況、製程廢氣污染來源與排放特性. 經濟部環境技術電子報第3期 2003.
4.工業污染防治技術服務團等著. 半導體製造業污染防治技術. 經濟部工業局, 1995.
5.Tsai CJ, Chang CT, Liu TW, Huang CC, Chien CL, Chein HM. Emission characteristics and control efficiency of acidic and basic gases and aerosols from packed towers. Atmospheric Environment. 2004 Feb;38(4):643-6.
6.Chein HM, Aggarwal SG, Wu HH. Efficient control system for low-concentration inorganic gases from a process vent stream: Application of surfactants in spray and packed columns. Environmental Science & Technology. 2004 Nov 1;38(21):5766-72.
7.簡弘民, 吳信賢, Aggarwal SG. 低濃度酸鹼廢棄高效率洗滌處理技術. 工業污染防治 2004:192-211頁.
8.國際癌症研究署網頁. http://monographs.iarc.fr/ENG/Classification/index.php Accessed 2008 October 16.
9.勞工安全衛生研究所. http://www.iosh.gov.tw/ Accessed 2008 October,16.
10.張書豪, 張木彬. 科學園區空氣污染物排放特性之探討. 國立中央大學環境工程學刊. 1999;6:215-28.
11.新竹市環境保護局. 新竹科學園區空氣品質管理及污染源稽查管制計畫. 1998.
12.羅俊光, Lo J-G, 陸志德, Luh C-T. 高科技產業相關水體中揮發性有機物分析之研究: 國立清華大學, 2000.
13.Chiu KH, Wu BZ, Chang CC, Sree U, Lo JG. Distribution of volatile organic compounds over a semiconductor industrial park in Taiwan. Environmental Science & Technology. 2005 Feb 15;39(4):973-83.
14.京華工程顧問公司. 新竹科學園區(含篤行營區、園區三五路基地及龍潭基地)環境品質監測報告: 科學工業園區管理局, 2004∼2006.
15.Tsai C-J, Aggarwal SG, Chang C-T, Hung I-F. Concentration Profiles of Acidic and Basic Air Pollutants Around an Industrial Park of Taiwan. Water, Air, & Soil Pollution. 2003;151(1).
16.蘇建中, 王竹方. 半導體工業區空氣污染物之懸浮微粒的調查分析. 2000.
17.Chein HM, Hsu YD, Aggarwal SG, Chen TM, Huang CC. Evaluation of arsenical emission from semiconductor and opto-electronics facilities in Hsinchu, Taiwan. Atmospheric Environment. 2006 Mar;40(10):1901-7.
18.Chen HW. Characteristics and risk assessment of trace metals in airborne particulates from a semiconductor industrial area of northern Taiwan. Fresenius Environmental Bulletin. 2007;16(10):1288-94.
19.行政院環境保護署. 地方環境資料庫 Accessed 2008 October,23, 新竹市.
20.陳思偉, 凌永健. 新竹科學工業園區高科技產業廢水分析與對承受水體之影響研究: 國立清華大學, 2003.
21.徐光毅, 凌永健. 高科技產業放流水中及流域水中離子成分分析及關連性評估: 國立清華大學, 2003.
22.Wu CH, Lu JT, Lo JG. Analysis of volatile organic compounds in wastewater during various stages of treatment for high-tech industries. Chromatographia. 2002 Jul;56(1-2):91-8.
23.科學工業園區管理局. 園區整體環境品質監測實況 Accessed 2008 October,15, 2006.
24.Chen HW. Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bulletin of Environmental Contamination and Toxicology. 2006 Aug;77(2):289-96.
25.Suzuki Y, Watanabe I, Oshida T, et al. Accumulation of trace elements used in semiconductor industry in Formosan squirrel, as a bio-indicator of their exposure, living in Taiwan. Chemosphere. 2007 Jul;68(7):1270-9.
26.Han BC, Jeng WL, Hung TC, Ling YC, Shieh MJ, Chien LC. Estimation of metal and organochlorine pesticide exposures and potential health threat by consumption of oysters in Taiwan. Environmental Pollution. 2000;109(1):147-56.
27.Jeng MS, Jeng WL, Hung TC, et al. Mussel Watch: a review of Cu and other metals in various marine organisms in Taiwan, 1991-98. Environmental Pollution. 2000;110(2):207-15.
28.石偉成, 林錕松. 河川及其出海口海域毒性污染物分佈與牡蠣生物累積關係之研究: 元智大學, 2007.
29.行政院環保署. 光電材料及元件製造業空氣污染管制及排放標準. 2006年1月5日訂定發布.
30.行政院環保署. 固定污染源空氣污染物排放標準. 1992年4月10日訂定發布.
31.USEPA. AP-42 Emission Factors. http://www.epa.gov/ttn/chief/ap42/index.html Accessed 2008 September 5.
32.Chein HM, Chen TM, Aggarwal SG, Tsai CJ, Huang CC. Inorganic acid emission factors of semiconductor manufacturing processes. Journal of the Air & Waste Management Association. 2004 Feb;54(2):218-28.
33.Chein HM, Chen TM. Emission characteristics of volatile organic compounds from semiconductor manufacturing. Journal of the Air & Waste Management Association. 2003 Aug;53(8):1029-36.
34.楊泰辰. 半導體製造夜空氣環境績效指標及指標污染物之建立. 國立交通大學環境工程研究所. 2000.
35.Eom YS, Hong JH, Lee SJ, et al. Emission factors of air toxics from semiconductor manufacturing in Korea. Journal of the Air & Waste Management Association. 2006 Nov;56(11):1518-24.
36.Xing Y, Guo H, Feddes J, Yu Z, Shewchuck S, Predicala B. Sensitivities of four air dispersion models to climatic parameters for swine odor dispersion. Transactions of the Asabe. 2007 May-Jun;50(3):1007-17.
37.Wang LJ, Parker DB, Parnell CB, Lacey RE, Shaw BW. Comparison of CALPUFF and ISCST3 models for predicting downwind odor and source emission rates. Atmospheric Environment. 2006 Aug;40(25):4663-9.
38.Krishna TVBPSR, Reddy MK, Reddy RC, Singh RN. Impact of an industrial complex on the ambient air quality: Case study using a dispersion model. Atmospheric Environment. 2005 Sep;39(29):5395-407.
39.Hanna SR, Paine R, Heinold D, Kintigh E, Baker D. Uncertainties in air toxics calculated by the dispersion models AERMOD and ISCST3 in the Houston ship channel area. Journal of Applied Meteorology and Climatology. 2007 Sep;46(9):1372-82.
40.Sivacoumar R, Bhanarkar AD, Goyal SK, Gadkari SK, Aggarwal AL. Air pollution modeling for an industrial complex and model performance evaluation. Environmental Pollution. 2001;111(3):471-7.
41.Xu MX, Yan JH, Lu SY, et al. Application of the ISCST3 model for predicting PCDD/F concentrations in agricultural soil in the vicinity of a MSWI plant in China. Journal of Zhejiang University-Science A. 2008 Mar;9(3):373-80.
42.Wang JB, Wang MS, Wu EMY, Chang-Chien GP, Lai YC. Approaches adopted to assess environmental impacts of PCDD/F emissions from a municipal solid waste incinerator. Journal of Hazardous Materials. 2008 Apr 15;152(3):968-75.
43.Ma HW, Lai YL, Chan CC. Transfer of dioxin risk between nine major municipal waste incinerators in Taiwan. Environment International. 2002 Apr;28(1-2):103-10.
44.Hao JM, Wu Y, Fu LX, He DQ, He KB. Source contributions to ambient concentrations of CO and NOX in the urban area of Beijing. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering. 2001;36(2):215-28.
45.Ying GX, Ma J, Xing Y. Comparison of air quality management strategies of PM10, SO2, and NOx, by an industrial source complex model in Beijing. Environmental Progress. 2007 Apr;26(1):33-42.
46.Sharma S, Chandra A. Simulation of air quality using an ISCST3 dispersion model. Clean-Soil Air Water. 2008 Jan;36(1):118-24.
47.Sax T, Isakov V. A case study for assessing uncertainty in local-scale regulatory air quality modeling applications. Atmospheric Environment. 2003 Aug;37(25):3481-9.
48.Skeffington RA, Whitehead PG, Heywood E, Hall JR, Wadsworth RA, Reynolds B. Estimating uncertainty in terrestrial critical loads and their exceedances at four sites in the UK. Science of the Total Environment. 2007 Sep 1;382(2-3):199-213.
49.Faulkner WB, Powell JJ, Lange JM, Shaw BW, Lacey RE, Parnell CB. Comparison of dispersion models for ammonia emissions from a ground-level area source. Transactions of the Asabe. 2007 Nov-Dec;50(6):2189-97.
50.Chang Kt (ed). Introduction To Geographic Information Systems, second edition: Margaret J. Kemp; 2004.
51.Elbir T. A GIS based decision support system for estimation, visualization and analysis of air pollution for large Turkish cities. Atmospheric Environment. 2004 Sep;38(27):4509-17.
52.Mindell J, Barrowcliffe R. Linking environmental effects to health impacts: a computer modelling approach for air pollution. Journal of Epidemiology and Community Health. 2005 Dec;59(12):1092-8.
53.Poulstrup A, Hansen HL. Use of GIS and exposure modeling as tools in a study of cancer incidence in a population exposed to airborne dioxin. Environmental Health Perspectives. 2004 Jun;112(9):1032-6.
54.Hellstrom L, Jarup L, Persson B, Axelson O. Using environmental concentrations of cadmium and lead to assess human exposure and dose. Journal of Exposure Analysis and Environmental Epidemiology. 2004 Sep;14(5):416-23.
55.Inserra S, Phifer B, Pierson R, Campagna D. Community-based exposure estimate for hydrogen sulfide. Journal of Exposure Analysis and Environmental Epidemiology. 2002 Mar;12(2):124-9.
56.USEPA. Industrial Source Complex (ISC3) Dispersion Models- User''s Guide II. Description of Model Algorithms. In: Agency USEP (ed). Research Triangle Park: EPA, 1995.
57.USEPA. Industrial Source Complex (ISC3) Dispersion Models- User''s Guide I. Description of Model Algorithms In: Agency USEP (ed). Research Triangle Park: EPA, 1995.
58.光宇工程顧問公司. 新竹科學園區(含篤行營區施工階段)環境品質監測報告: 科學工業園區管理局, 2003.
59.Agency CEP. Technical Support Document for the Determination of Noncancer Chronic Reference Exposure Levels, Office of Environmental Health Hazard Assessment, Air Toxicology and Epidemiology Section, Berkeley 1997.
60.康城工程顧問公司、工研院工業安全衛生發展中心. 新竹科學園區空氣品質管理及污染源稽查管制計畫. 新竹市環境保護局. 1999.
61.黃秉瑜. 新竹學園區固定污染源排放減量管制策略. 國立交通大學工學院專班永續環境科技學程碩士論文. 2007.
62.劉沁瑋. 新竹科學工業園區空氣污染物排放總量推估及ISCST3擴散模式應用. 國立交通大學環境工程所碩士論文. 2002.
63.施寶惠. 高科技工業園區州界環境空氣中酸性氣膠之探討. 國立交通大學環境工程所碩士論文. 2001.
64.Konieczynski J, Komosinski B. Measurements and investigations of emission of dust and gaseous pollutants from circulating fluidized bed boilers. Arch Environ Prot. 2007;33(1):3-13.
65.Waldman JM, Liang SKC, Lioy PJ, Thurston GD, Lippmann M. Measurements of Sulfate Aerosol and Its Acidity in the So2 Source Region of Chestnut-Ridge, Pa. Atmospheric Environment Part a-General Topics. 1991;25(7):1327-33.
66.Kouyoumdjian H, Saliba NA. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride. Atmos Chem Phys. 2006 May 31;6:1865-77.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top