跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張馨淳
研究生(外文):Hsin-Chun Chang
論文名稱:建立生醫材料對細胞造成老化影響的程序設計
論文名稱(外文):Process Design for the Effects of Biomaterials on Cellular Senescence
指導教授:楊台鴻
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:細胞老化高分子生物薄膜細胞株聚乙烯乙烯醇共聚物乙醇
外文關鍵詞:cellular senescencepolymer biomembranescell linepoly(vinyl alcohol-co-ethylene)ethanol
相關次數:
  • 被引用被引用:1
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚乙烯乙烯醇(EVAL)是一種近年來常利用的高分子材料。本實驗室中已經證實,將纖維母細胞培養在莫耳比例不同的聚乙烯乙烯醇薄膜表面,經過一段時間後,細胞在老化相關的基因、生長曲線、細胞形態都產生明顯的差異。但缺點是此實驗因為正常體細胞,分裂速度較慢,必須長時間才能完成實驗,並且因為長期培養,還可能要承擔污染或是細胞狀況不穩定的風險。因此在本實驗中,主要目的是希望改善研究老化議題時需長期培養細胞的缺點,建立一個有效率地測試材料對細胞是否造成老化影響的平台。

在這裡使用鼻咽癌的細胞株HONE-1以及非小細胞肺癌細胞株H1299兩種癌細胞作為老化現象的觀測細胞,主要是因為癌細胞分裂次數較快,而且在探討其因為外力造成老化的前驅性老化時,可避免正常體細胞會有的複製性老化現象。其中,H1299缺少了老化常有過度表現的p53基因,在此也可探討p53基因的有無,是否對細胞的老化造成影響。實驗中選用聚乙烯莫耳比例27%(EVAL27)及44%(EVAL44)以及商業用的組織培養盤(TCPS)作為實驗中的三種不同實驗材料。

實驗分為兩部分:第一部分是探討將細胞培養在不同材料上是否會造成老化表現的差異。其中包括培養在高分子材料上但不施予其他應力、同時施予5%乙醇二小時與高分子材料兩種應力、或是先使用乙醇處理後在培養在不同材料上等三種實驗流程。第二部分探討施予不同濃度乙醇處理後的細胞,是否會在三種材料上出現生長的差異。

實驗顯示:若是僅將細胞培養在不同的材料上,細胞僅會有生長速度不同的現象,並不會對細胞造成任何老化的效果。而若是繼代培養加入5%乙醇的浸泡,卻使得細胞因為乙醇而快速造成老化,觀察不出材料間是否有不同的差異,而調整的浸泡乙醇的次數,卻沒有改善上述的情形。不同濃度乙醇的處理顯示在某些濃度的乙醇處理下,細胞的生長速度會產生差異,TCPS表現的細胞分裂速度較快,但其他兩種材料間差異不大。因此,實驗顯示這樣設計的實驗平台效果有限,三種不同的材料並不會對細胞株造成老化的影響,而僅有生長速度略微不同的差異而已。而乙醇造成的傷害太大,也無法比較三種材料間的差異。

由實驗的結果推斷:這三種材料對於細胞株的影響能力有限,僅僅在細胞的分裂速度上會有些微的差距。而加上浸泡數次乙醇或是不同濃度乙醇處理,對於細胞內累積過多外來應力,造成細胞株老化、死亡,但是卻無法分辨三種材料間是否對細胞有不同的影響。因此這個平台設計的效果並不如預期好,可以看出材料影響細胞的生長速度,但無法有效改善探討老化時長時間培養的缺點。
Poly (ethylene-co-vinyl alcohol) (EVAL) is a copolymer which has been widely used as biomaterials recently. In our laboratory, it is proved that primary skin dermal fibroblasts cultured on EVAL biomembranes have significant influences on cell morphology, growth curve, and gene expression associated with senescence. However, the recent process of studying senescence phenomenon has some major shortcomings such as slow-rating division, long time for cultivation, and risks of pollution or poor cell conditions occasionally. In this research, the main purpose is to set up a quick-acting method, which can greatly shorten the cultivation time. Thus, the senescent effects by different biomembranes could be examined more effectively.

Here, the Nasopharyngeal Carcinoma (NPC) cell line, HONE-1, and non-small cell lung carcinoma (NSCLC) cell line, H1299, are used as experimental cell to observe the behaviors of senescence. In this manner, the replicative senescence is avoided due to the rapid cleavage rate of the cell line. On the other hand, because of the lack of p53 gene, the cell line H1299 may go to senescence in another pathway different from that originally involved in p53 gene. In the point of view, the effect of gene p53 on cell senescence can also be discussed. Besides, in the experiment, the cell is cultured on three types of surface; they are EVAL44 (EVAL which composed of 44 mol% hydrophobic ethylene segment), EVAL27 (EVAL which composed of 27 mol% hydrophobic ethylene segment), and TCPS (tissue culture polystyrene plates), respectively.

The experimental procedure is classified into three modes. One mode is that the cells are cultured on the three types of biomembrane surefaces for a long time to distinguish the differences among them. Another one is that the cells are cultured on the three biomembrane surfaces and exposed to ethanol at the same time. The other mode is that the cells are cultured on the three biomembrane surfaces after exposure to ethanol for several times. After that, the senescence effects on the cell line by the different biomembranes were observed.

As shown in the results, however, the three types of surface have limited influence on the cancer cell line. If the cells were treated with ethanol, they may go to the senescent stage. Otherwise, if ethanol treatment was cancelled, the difference in division rate can hardly be observed, but the cells didn’t go to senescence. Therefore, the designed process is not as satisfactory as expected, for its inability to improve the long-time consuming problem.
目錄
致謝……………………………………………………I
摘要…………………………………………………III
Abstract………………………………………………V
目錄…………………………………………………VII
圖目錄………………………………………………IX
第一章 序論…………………………………………1
第二章 文獻回顧……………………………………3
第一節 細胞老化……………………………………3
第二節 細胞培養……………………………………9
第三節 生醫材料……………………………………11
第四節 材料對細胞的影響…………………………12
第三章 材料與方法…………………………………14
第一節 實驗藥品……………………………………14
第二節 實驗儀器……………………………………16
第三節 藥品配製……………………………………17
第四節 實驗方法……………………………………19
第四章 實驗設計……………………………………24
第一節 實驗目的……………………………………24
第二節 參考的文獻流程……………………………24
第三節 實驗設計流程………………………………24
第四節 流程圖………………………………………26
第五章 結果與討論…………………………………27
第一節 細胞活性與細胞毒性試驗…………………27
第二節 細胞貼附、脫附能力………………………28
第三節 生長曲線……………………………………31
第四節 細胞形態……………………………………38
第五節 senescence-associated β-galactosidase 染色情形…47
第六節 蛋白質表現…………………………………52
第七節 細胞倍增時間、細胞活性、細胞毒性與乙醇的關係……66
第八節 綜合討論……………………………………68
第六章 結論…………………………………………71
參考文獻……………………………………………72
附錄…………………………………………………81
[1] Hayflick, L., & Moorhead, P. S., The serial cultivation of human diploid cell strains. Experimental Cell Research, 1961; 25: 585-621
[2] Ittai B.P., R.A. Weinberg, The signals and pathways activating cellular senescence., The International Journal of Biochemistry & Cell Biology, 2005; 37: 961-976
[3] Martin, G.M., Sprague, C.A., Epstein, C.J., Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Laboratory Investigation, 1970; 23: 86-92
[4] Le Guilly, Y., Simon, M., Lenoir, P., Bourel, M., Long-term culture of human adult liver cells: morphological changes related to in vitro senescence and effect of donor’s age on growth potential. Gerontologia, 1973; 19: 303-313
[5] Bruce, S.A., Deamond, S.F., Ts’o, P.O., In vitro senescence of Syrian hamster mesenchymal cells of fetal to aged adult origin. Inverse relationship between in vivo donor age and in vitro proliferative capacity. Mechanism of Ageing and Development, 1986; 34: 151-173
[6] Jessie C. Jeyapalan, John M. Sedivy, Cellular senescence and organismal aging. Mechanisms of Ageing and Development, 2008; 129: 467-474
[7] Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., Lowe, S.W., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 1997; 88: 593-602
[8] Cosme-Blanco, W., Shen, M.F., Lazar, A.J., Pathak, S., Lozano, G., Multani, A.S., Chang, S., Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Reports, 2007; 8: 497-503
[9] Xue, W., Zender, L., Miething, C., Dickins, R.A., Hernando, E., Krizhanovsky, V., Cordon-Cardo, C., Lowe, S.W., Senescence and tumor clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 2007; 445: 656-660
[10] Wang, E., Senescence human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Research, 1995; 55: 2284-2292
[11] Seluanov, A., Gorbunova, V., Falcovitz, A., Sigal, A., Milyavsky, M., Zurer, I., Shohat, G., Goldfinger, N., Rotter, V., Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. Molecular and Cellular Biology, 2001; 21: 1552-1564
[12] Jackson, J.G., Pereira-Smith, O.M., p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Research, 2006; 66: 8356-8360
[13] Patrick J. Rochette and Douglas E. Brash, Progressive apoptosis resistance prior to senescence and control by the anti-apoptotic protein BCL-xL. Mechanisms of Ageing and Development, 2008; 129: 207-214
[14] Aggarwal S., Gupta S., Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, Bax. Journal of Immunology, 1998; 160: 1627-1637
[15] Wagner M., Hampel., Bernhard D., Hala M., Zwerschke W., Jansen-Durr P., Replicative senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and senescence-associated apoptosis. Experimental Gerontology, 2001; 36: 1327-1347
[16] Yeo E.J., Hwang Y.C., Kang C.M., Choy H.E., Park S.C., Reduction of UV-induced cell death in the human senescent fibroblasts. Molecular and Cells, 2000; 10: 415-422
[17] T. Mammone, D. Gan, Reyhaneh Foyouzi-Youssefi, Apoptotic cell death increases with senescence in normal dermal fibroblast cultures. Cell Biology International, 2006; 30: 903-909
[18] Luschen, S., Ussat, S., Scherer G., Kabelitz, D., Adam-Klages, S., Sensitization to death receptor cytotoxicity by inhibition of fas-associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. Journal of Biological Chemistry, 2000; 275: 24670-24678
[19] Abdelhadi Rebbaa, Xin Zheng, Pauline M Chou and Bernard L Mirkin, Caspase inhibition switches doxorubicin-induced apoptosis to senescence. Oncogene, 2003; 22: 2805–2811
[20] Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T., Mammalian telomeres end in a large duplex loop. Cell, 1999; 97: 503-514
[21] Harley C.B., Futcher A.B., Greider C.W., Telomeres shorten during ageing of human fibroblasts. Nature, 1990; 345: 458-460
[22] Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.P., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E., Extension of life-span by introduction of telomerase into normal human cells. Science, 1998; 279: 349-352
[23] Gire V., Wynfold-Thomas D., Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Molecular and Cellular Biology, 1998; 18: 1611-1621
[24] Webley K., Bond J.A., Jones C.J. Blaydes J.P., Craig A., Hupp T., Wynford-Thomas D., Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Molecular and Cellular Biology, 2000; 20: 2803-2808
[25] Jean-Francois Dierick, Francois Eliaers, Jose Remacle, Martine Raes, Stephen J. Fey, Peter Mose Larsen, Olivier Toussaint, Stress-induced premature senescence and replicative senescence are different phenotypes, proteomic evidence. Biochemical Pharmacology, 2002; 64: 1011-1017
[26] Florence Chainiaux, Joao-Pedro Magalhaes, Francois Eliaers, Jose Remacle, Olivier Toussaint, UVB-induced premature senescence of humandiploid skin fibroblasts. The International Journal of Biochemistry & Cell Biology, 2002; 34: 1331-1339
[27] Elisabetta Straface, Rosa Vona, Barbara Ascione, Paola Matarrese, Tiziana Strudthoff, Flavia Franconi, Walter Malorni, Single exposure oh human fibroblasts (WI-38) to a sub-cytotoxic dose of UVB induces premature senescence. FEBS Letters, 2007; 581: 4342-4348
[28] Hermann Unterluggauer, Barbara Hampel, Werner Zwershke, Pidder Jansen-Durr, Senescence-associated cell death of human endothelial cells: the role of oxidative stress. Experimental Gerontology, 2003; 38: 1149-1160
[29] Cecile Bladier, Emst J. Wolvetang, Paul Hutchinson, Judy B. de Haan, and Ismail Kola, Response of a primary human fibroblast cell line to H2O2: Senescence-like growth arrest or apoptosis? Cell Growth & Differentiation, 1997; 8: 589-598
[30] Thierry Pascal, Florence Debacq-Chainiaux, Emmanuelle Boilan, Noelle Ninane, Martine Raes, Oliver Toussaint, Heme oxygenase-1 and interleukin-11 are overexpressed in stress-induced premature senescence of human WI-38 fibroblasts induced by tert-butylhydroperoxide and ethanol. Biogerontology, 2007; 8: 409-422
[31] Wahl, G.M., & Carr, A.M., The evolution of diverse biological responses to DNA damage: Insights from yeast and p53. Nature Cell Biology, 2001; 3: E277-E286
[32] Frank, K.M., Sharpless, N.E., Gao, Y., Sekjiguchi, J.M., Ferguson, D.O., Zhu, C., DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Molecular Cell, 2000; 5: 993-1002
[33] Gao, Y., Ferguson, D.O., Xie, W., Manis, J.P., Sekiguchi, J., Frank, K.M., Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature, 2000; 404: 897-900
[34] Ongusaha, P.P., Ouchi, T., Kim, K.T., Nytko, E., Kwak, J.C.,Duda, R.B., BRAC1 shifts p53-mediated cellular outcomes towards irreversible growth arrest. Oncogene, 2003; 22: 3749-3758
[35] Khan, S., Guevara, C., Fujii, G., & Parry, D., p14 ARF is a component of the p53 response following ionizing irradiation of normal human fibroblasts. Oncogene, 2004; 23: 6040-6046
[36] Robles, S.J., & Adami, G.R., Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene, 1998; 16: 1113-1123
[37] Zhu, J., Woods, D., McMahon, M., & Bishop, J.M., Senescence of human fibroblasts induced by oncogenic Raf. Genes & Development, 1998; 12: 2997-3007
[38] Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature, 2000; 406: 207-210
[39] Sherr, C.J. & Depinho, R.A., Cellular senescence: mitotic clock or culture shock? Cell, 2000; 102: 407-410
[40] Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., & Campisi, J., Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature Cell Biology, 2003; 5: 741-747
[41] Stanley,A.C., Fernandez, N.N., Lounsbury, K.M., Corrow, K, Osler, T., Healey, C., Forgione, P., Shackford, S.R., Ricci, M.A., Pressure-induced cellular senescence; a nechanism linking venous hypertention to venous ulcers. Journal of Surgical Research, 2005; 124(1): 112-117
[42] von Zglinicki, T., Saretzki, G., Docke, W., & Lotze, C., Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: A model for senescence? Experimental Cell Research, 1995; 220: 186-193
[43] Lee, A.C., Fenster, B.E., Ito, H., Takeda, K., Bae, N.S., Hirai, T., Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. Journal of Biological Chemistry, 1999; 274: 7936-7940
[44] Clemens A. Schmitt, Cellular senescence and cancer treatment. Biochimica et Biophysica Acta, 2007; 1775: 5-20
[45] Hiroaki Iwasa, Jiahuai Han, Fuyuki Ishikawa, Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes to Cells, 2003; 8: 131-144
[46] Pantoja, C., & Serrano, M., Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene, 1999; 18: 4974-4982
[47] Smogorzewska, A., & de Lange, T., Different Telomere damage signaling pathways in human and mouse cells. The EMBO Journal, 2002; 21: 4338-4348
[48] G.P. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E.E. Medrano, M. Linskens, I. Rubelj, O.P. Smith, M. Peacocke, and J. Campisi,. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1995; 92: 9363-9367
[49] Miao-Fen Chen, Wen-Cheng Chen, Chun-Te Wu, Paul-Yang Lin, Hungyi Shau, Shuen-Kuei Liao, Cheng-Ta Yang, Kuan-Der Lee, p53 status is a major determinant of effects of decreasing peroxiredoxin I expression on tumor growth and response of lung cancer cells to treatment. International Journal of Radiation Oncology Biology Physics, 2006; 66(5): 1461-1472
[50] Gee-Chen Chang, Shih-Lan Hsu, Jia-Rong Tsai, Wen-Jun Wu, Chih-Yi Chen, Gwo-Tarng Sheu, Extracellular signal-regulated kinase activation and Bcl-2 downregulation mediate apoptosis after gemcitabine treatment partly via a p53-independent pathway. European Journal of Pharmacology, 2004; 502 (3): 169-183
[51] Shiang-Jiuun Chen, Jia-Lin Wang, Jian-Hung Chen, Rong-Nan Huang, Possible involvement of glutathione and p53 in trichloroethylene- and perchloroethylene-induced lipid peroxidation and apoptosis in human lung cancer cells. Free Radical Biology and Medicine, 2002; 33 (4): 464-472
[52] Yingcai Wang, Giovanni Blandino and David Givol, Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene, 1999; 18(16): 2643-2649
[53] Rachel S. Roberson, Steven J. Kussick, Eric Vallieres, Szu-Yu J. Chen and Daniel Y. Wu1, Escape from Therapy-Induced Accelerated Cellular Senescence in p53-Null Lung Cancer Cells and in Human. Cancer Research, 2005; 65: 2795-2803
[54] Iwakiri, D., Sheen, T.S., Chen, J.Y., Poon, H.D., Takada, K., Epstein-Barr virus-encoded small RNA induces insulin-like growth factor 1 and supports growth of nasopharyngeal carcinoma-derived cell lines. Oncogene, 2005; 24(10): 1767-1773
[55] Eric V. Yang, Anil K. Sood, Min Chen, Yang Li, Tim D. Eubank, Clay B. Marsh, Scott Jewell, Nicholas A. Flavahan, Carl Morrison, Peir-En Yeh, Stanley Lemeshow and Ronald Glaser, Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Research, 2006; 66(21): 10357-10364
[56] 洪智煌,乙烯乙烯醇共聚物與聚乙烯醇薄膜接枝雙胺及其培養神經元細胞
之探討,國立台灣大學醫學工程學研究所碩士論文,2002
[57] T.H. Young, C.Y. Lee, H.C. Chiu, C.J. Hsu, S.J. Lin, Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials, 2008; 29: 3521–3530
[58] T.H. Young, W.Y. Chuang, C.W. Wei, C.Y. Tang, Investigation of the drug distribution and release characteristics from particulate membranes. Journal of Membrane Science, 2001; 191: 199–205
[59] D.T. Lin, L.P. Cheng, Y.J. Kang, L.W. Chen, T.H. Young , Effects of precipitation conditions on the membrane morphology and permeation characteristics. Journal of Membrane Science, 1998; 140: 185-194
[60] T.H. Young, C.H. Yao, J.S. Sun, C.P. Lai, L.W. Chen, The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro. Biomaterials, 1998; 19: 717-724
[61] T.H. Young, J.H. Huang, S.H. Hung, J.P. Hsu, The role of cell density in the survival of cultured cerebellar granule neurons. Journal of Biomedical Materials Research, 2000; 52: 748-753
[62] T.H. Young, C.W. Lin, L.P. Cheng, C.C. Hsieh, Preparation of EVAL membranes with smooth and particulate morphologies for neuronal culture. Biomaterials, 2001; 22: 1771-1777
[63] T.H. Young, W.W. Hu, Covalent bonding of lysine to EVAL membrane surface to improve survival of cultured cerebellar granule neurons. Biomaterials, 2003; 24: 1477-1486
[64] 邱明逸,纖維母細胞培養於不同生物薄膜所引發之類似老化之表徵,國立
台灣大學醫學工程學研究所碩士論文,2007
[65] Volloch, V. & D. Kaplan, Matrix-mediated cellular rejuvenation. Matrix Biology, 2002; 21(6): 533-543
[66] Erkki Ruoslahti & John C. Reed, Anchorage dependence, integrins, and apoptosis. Cell, 1994; 77: 477-478
[67] Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S. Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature, 1996; 379(6560): 91-96
[68] Xiangmei Chen, Zhihui Li, Zhe Feng, Jianzhong Wang, Chun Ouyang, Weiping Liu, Bo Fu, Guangyan Cai, Chuanyue Wu, Ribao Wei, Di Wu and Quan Hong, Integrin-linked kinase induces both senescence-associated alterations and extracellular fibronectin assembly in aging cardiac fibroblasts. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2006; 61(12): 1232-1245
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top