跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張淳農
研究生(外文):Chun-Nung Chang
論文名稱:鼻腔暴露與氣管灌注奈米氧化鋅微粒後動物體內肺部外鋅轉移情形研究
論文名稱(外文):Extrapulmonary Translocation of Ultrafine Zinc Oxide Particles Following Nose-only Exposure and Intratracheal Instillation
指導教授:黃耀輝黃耀輝引用關係
指導教授(外文):Yaw-Huei Hwang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:76
中文關鍵詞:氧化鋅奈米微粒微透析氣管灌注
外文關鍵詞:Zinc oxidenano-particlemicrodialysisintratracheal instillation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米氧化鋅被廣泛的應用在工業以及生產上,其大量的生產也造成了工人在製造、包裝及運輸過程中的暴露機會。有研究指出,奈米微粒進入生物體內會引發發炎、血栓以及心血管疾病,甚至進一步穿透細胞間隙進入循環系統,透過再分佈到達體內各器官、組織。本研究的目的在應用微透析技術連續採樣的優點,探討氧化鋅在動物循環系統的濃度變化情形。以及氣管灌注奈米氧化鋅至動物體內後,氧化鋅在器官、組織間的分布情形,並以此作為後續氧化鋅相關健康危害研究的基礎。
本研究使用七週大之 Sprague-Dawley 雄鼠,實驗分為呼吸暴露以及氣管灌注實驗兩個部份進行。微透析採樣部份以鼻腔暴露方式暴露於乾淨空氣1小時後 接續暴露50 nm 級之氧化鋅微粒4小時,暴露期間以微透析進行血液透析液連續採樣。第二部份將市售奈米氧化鋅及細微粒氧化鋅利用氣管灌注方式暴露至老鼠體內,每組實驗動物三隻,劑量為 5mg/kg,並在暴露後3小時、6小時、12小時、24小時分批進行犧牲,取得血清、血漿、全血、心臟、肺臟、肝臟、腎臟樣本,經微波消化後以感應耦合電漿質譜儀定量分析鋅濃度。
微透析透析液分析結果顯示,在體外實驗的回收率僅有4.3 %,在不同批次的實驗當中透析液的鋅濃度也未隨時間出現明顯變化趨勢。實驗動物體內高鋅背景值也對實驗結果造成影響。氣管灌注的實驗結果指出,在奈米氧化鋅以及細微粒氧化鋅實驗動物當中血清、全血,以及肝臟的鋅濃度有隨時間上升的趨勢,其他如血漿、心、肺臟及腎臟樣本中之鋅含量則未觀察到明顯的變化。實驗動物暴露不同粒徑大小微粒後各個器官的鋅濃度分布的差異也未達統計顯著。
本研究結果指出應用微透析採樣技術於奈米氧化鋅暴露實驗採樣並不成功,且需要進一步的調整實驗參數、介質與透析溶液,改進微透析對氧化鋅微粒的回收率,再應用於將來的實驗當中。氣管灌注實驗中,動物體內鋅背景值干擾器官與組織的鋅濃度定量,血漿、心、肺臟及腎臟中鋅的濃度並無顯著變化,但血清中的鋅濃度變化支持了氧化鋅微粒進入循環系統的假設。另外,於肝臟觀察到明顯的鋅濃度提升,有可能是氧化鋅經由循環系統再進入肝臟。但另一推測是實驗動物在灌注的過程中將氧化鋅食入消化道所導致,這部份仍需進一步實驗證明肝臟中的氧化鋅來源。後續研究將應用同位素技術以及發展微透析技術於奈米氧化鋅在體內之分布來解決背景值以及動物體間差異性的影響。
Nano-sized zinc oxide was applied in industries extensively, and many workers are exposed to zinc oxide directly or indirectly in factories, production facilities, and in operation where zinc oxide was proceeded, used, disposed, or recycled concurrently. However, there are literatures indicating that nano-sized particles may induce inflammation, thrombosis and cardiovascular diseases, or even penetrate into systemic circulation and redistribute to secondary organs. In our study, the aims were set to explore the zinc translocation in systemic circulation, characterize the distributions of the zinc levels in rat organs after exposing to fine and ultrafine particles intratracheally, and provide relevant the parameters for further kinetics studies.
Seven-week old male Sprague-Dawley (SD) rats were used in this study. This study was conducted in two parts. In the first part, study animals were exposed to clean air for 1 hour and then exposed to airborne zinc oxide for 4 hours. Continuous microdialysis sampling was performed during the exposure experiment. On the other part, we intratracheally instilled ultrafine and fine zinc oxide particles of 50 nm and 325 Mesh, respectively, in PBS solution to the study animals at a dose of 5mg/kg, with three animals per group. Rats were sacrificed at 3, 6 ,12 and 24 hours post exposure, and the zinc concentrations in whole blood, plasma, serum, heart, lung, liver, kidney and dialysates of the study animals were determined by inductive coupled plasma mass spectrometry (ICP-MS) following the pretreatment process of freeze-drying and microwave digestion.
The results of microdialysis revealed that in vitro recovery rate for zinc oxide was only 4.3%, and no obvious trend for zinc levels in dialysate with times was observed. In addition, the high zinc background level in the study animal might interfere with the results of zinc analysis. In the part of intratracheal instillation study, zinc levels were found elevated in serum, whole blood and liver in both ultrafine and fine zinc oxide particle exposure groups. However, there was no obvious trend for plasma, heart, lung and kidney samples. The difference in zinc levels in organ and tissue samples between these two exposure groups was not statistically significant.
The results indicated the application of microdialysis in inhalation study was not successful in this study. The elevations of zinc levels in serum, liver with time after exposing to nano-sized zinc oxide particles intratracheally supported that the particle translocation happened to systemic circulation, although the trends were not obvious. The elevation of zinc level in liver is probably attributed to the systemic translocation. However, another speculation is attributed to the absorption from gastrointestinal system while intratracheal instillation. Further study needs to clarify the exposure routes for zinc oxide particulates. Isotope technology is considered to be applied in the future study to differentiate the inhaled zinc content during experimental study from the background levels in organism. In general, the findings in our study provided preliminary information on the distribution of nano-sized ZnO particle in experimental animals after inhalation exposure for risk assessment.
Contents i
List of Figures iii
List of Tables v
摘要 vii
Abstract ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Study Objectives 3
Chapter 2 Literature Review 4
2.1 Potential Health Effects Induced by Nanoparticles 4
2.2 Distribution of Ultrafine Particles in Organism 7
2.3 Review of the Pilot Study 14
2.4 Principles of Microdialysis 16
Chapter 3 Materials & Methods 18
3.1 Microdialysis 18
3.2 Intratracheal Instillation 25
3.3 Sample Pretreatment 31
3.4 Zinc Determination 34
3.5 Statistics 38
Chapter 4 Results 39
4.1 Aerosol Characteristics of Zinc Oxide Particulates 39
4.2 Microdiaysis Dialysate Analysis 39
4.3 Characteristics of Particles Applied in the Present Study 46
4.4 Intratracheal Instillation and Zinc Distribution in Animal Body 46
Chapter 5 Discussion 57
5.1 Microdialysis Application 57
5.2 Intratracheal Instillation & Zinc Distribution in Rat Organs 60
5.3 More Technologies for Future Animal Kinetics Study 65
Chapter 6 Conclusions 68
Reference 69
Beckett W. S., David F. C., Andrea P.-B., Donna M. S., Judith C. S. and Mark W. F. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. American Journal of Respiratory and Critical Care Medicine 2005; 171(10): 1129-35.
Bermudez E., James B. M., Brian A. W., Bahman A., Paul M. H. and David B. W. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicological Sciences 2004; 77(2): 347-57.
Brown D. M. Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines. Toxicology and Applied Pharmacology 2001; 175(3): 191.
Chen J., Gaillardet J. and Louvat P. Zinc isotopes in the Seine River waters, France: a probe of anthropogenic contamination. Environmental Science & Technology 2008; 42(17): 6494-6501.
Chen J., Mingguang T., Abderrahim N., Weiming S., Mo D. and Guilin Z. Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide. Toxicology 2006; 222(3): 195-201.
Chen L.-A. The Zinc Distribution Characteristics in Rats after Exposing to Nano-sized Zinc Oxide[Master Thesis]. Graduate Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University 2008.
Donaldson K., Brown D., Clouter A., Duffin R., MacNee W., Renwick L., Tran L. and Stone V. The Pulmonary Toxicology of Ultrafine Particles. Journal of Aerosol Medicine 2002; 15(2): 213-220.
Dowling A., Clift R., Grobert N., Hutton D., Oliver R., O’Neill O., Pethica J., Pidgeon N., Porritt J. and Ryan J. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society and the Royal Academy of Engineering 2004; 29.
Driscoll K. E., Costa D. L., Hatch G., Henderson R., Oberdorster G., Salem H. and Schlesinger R. B. Intratracheal Instillation as an Exposure Technique for the Evaluation of Respiratory Tract Toxicity: Uses and Limitations, Soc Toxicology. 2000; 55: 24-35.
Gopee N. V., Dean W. R., Peggy W., Christy R. C., Paul H. S. and Alan R. W. Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicological Sciences 2007; 98(1): 249-57.
Hirata T., Tanoshima M., Suga A., Tanaka Y.-k., Nagata Y., Shinohara A. and Chiba M. Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry. Analytical Sciences: The International Journal Of The Japan Society For Analytical Chemistry 2008; 24(11): 1501-1507.
Keane M. J. A Quantitative In Vitro Fluorescence Imaging Method for Phospholipid Loss from Respirable Mineral Particles. Inhalation Toxicology 2005; 17(6): 287.
Kodavanti U. P., Moyer C. F., Ledbetter A. D., Schladweiler M. C., Costa D. L., Hauser R., Christiani D. C. and Nyska A. Inhaled Environmental Combustion Particles Cause Myocardial Injury in the Wistar Kyoto Rat, Soc Toxicology. 2003; 71: 237-245.
Kodavanti U. P., Schladweiler M. C. J., Ledbetter A. D., Hauser R., Christiani D. C., Samet J. M., McGee J., Richards J. H. and Costa D. L. Pulmonary and Systemic Effects of Zinc-Containing Emission Particles in Three Rat Strains: Multiple Exposure Scenarios, Soc Toxicology. 2002; 70: 73-85.
Kreyling W. G., Semmler M., Erbe F., Mayer P., Takenaka S. and Schulz H. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health Part A: Current Issues 2002; 65(20): 1513-30.
Lockman P. R., Joanna M. K., Russell J. M. and David D. A. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. Journal of Drug Targeting 2004; 12(9-10): 635-41.
Möller W., Felten K., Sommerer K., Scheuch G., Meyer G., Meyer P., Häussinger K. and Kreyling W. G. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. American Journal Of Respiratory And Critical Care Medicine 2008; 177(4): 426-432.
Mackison F. W. and Stricoff R. S. NIOSH/OSHA: Pocket guide to chemical hazards. 1978.
Mills C. F. Zinc in Human Biology, Springer Verlag, 1989
Myriam R. Lorenz M.-V. K., Martin Dass, Paul Walther, Anita Höcherl, Ulrich Ziener, Katharina Landfester, Volker Mailäder,. Synthesis of Fluorescent Polyisoprene Nanoparticles and their Uptake into Various Cells. Macromolecular Bioscience 2008; 8(8): 711-727.
Nel A. Toxic Potential of Materials at the Nanolevel. Science 2006; 311(5761): 622.
Nemmar A. Passage of Inhaled Particles Into the Blood Circulation in Humans. Circulation 2002; 105(4): 411.
Nemmar A., Marc F. H., Peter H. M. H. and Benoit N. Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicology Letters 2004; 149(1-3): 243-53.
Nemmar A., Marc F. H., Peter H. M. H., David D., Tim S. and Haiyan X. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. American Journal of Respiratory and Critical Care Medicine 2002; 166(7): 998-1004.
NIOSH. About Nanotechnology: Background. National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. 2006: Accessed on Dec. 18, 2006 at http://www.cdc.gov/niosh/topics.nanotech/strat_plan.html.
Oberdörster G. Extrapulmonary Translocation of Ultrafine Carbon Particles Following Whole-Body Inhalation Exposure of Rats. Journal of Toxicology and Environmental Health Part A: Current Issues 2002; 65(20): 1531.
Oberdörster G. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives (EHP) 2005.
Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R. and Kreyling W. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology 2004; 16(6-7): 437-45.
Pope C. A., Burnett R. T., Thun M. J., Calle E. E., Krewski D., Ito K. and Thurston G. D. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution, Am Med Assoc. 2002; 287: 1132-1141.
Pope C. A., Burnett R. T., Thurston G. D., Thun M. J., Calle E. E., Krewski D. and Godleski J. J. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution Epidemiological Evidence of General Pathophysiological Pathways of Disease, Am Heart Assoc. 2004; 109: 71-77.
Rahman Q., Lohani M., Dopp E., Pemsel H., Jonas L., Weiss D. G. and Schiffmann D. Evidence That Ultrafine Titanium Dioxide Induces Micronuclei and Apoptosis in Syrian Hamster Embryo Fibroblasts. Environmental Health Perspectives 2002; 110(8): 797-800.
Semmler M., Seitz J., Erbe F., Mayer P., Heyder J. and Oberdörster G. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhalation Toxicology 2004; 16(6-7): 453-9.
Shimada A. Translocation Pathway of the Intratracheally Instilled Ultrafine Particles from the Lung into the Blood Circulation in the Mouse. Toxicologic Pathology 2006; 34(7): 949.
Swift J. L. and Cramb D. T. Nanoparticles as fluorescence labels: is size all that matters? Biophysical Journal 2008; 95(2): 865-876.
Takenaka S. Pulmonary and Systemic Distribution of Inhaled Ultrafine Silver Particles in Rats. Environmental Health Perspectives 2001; 109: 547.
Takenaka S. Fate and Toxic Effects of Inhaled Ultrafine Cadmium Oxide Particles in the Rat Lung. Inhalation Toxicology 2004; 16(11): 83.
Takenaka S., Karg E., Kreyling W. G., Lentner B., Möller W. and Behnke-Semmler M. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhalation Toxicology 2006; 18(10): 733-40.
Tsai T. H. Assaying protein unbound drugs using microdialysis techniques. Journal of Chromatography B 2003; 797(1-2): 161.
Ungerstedt U. and Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 1974; 30(1-3): 44-55.
USEPA U. Method 3052, Microwave assisted acid digestion of siliceous and organically based matrices. Environmental Protection Agency, USA 1996.
Vauthier C., Cabane B. and Labarre D. How to concentrate nanoparticles and avoid aggregation? European Journal of Pharmaceutics and Biopharmaceutics 2008; 69(2): 466-475.
Wallenborn J. G., Kovalcik K. D., McGee J. K., Landis M. S. and Kodavanti U. P. Systemic translocation of 70Zinc: Kinetics following intratracheal instillation in rats. Toxicology and Applied Pharmacology 2009; 234(1): 25-32.
Warheit D. B. Comparative Pulmonary Toxicity Inhalation and Instillation Studies with Different TiO2 Particle Formulations: Impact of Surface Treatments on Particle Toxicity. Toxicological Sciences 2005; 88(2): 514.
Wiebert P., Alejandro S.-C., Rolf F., Klas P., Anders L. and Stig L. No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhalation Toxicology 2006; 18(10): 741-7.
Wiebert P., Sanchez-Crespo A., Seitz J., Falk R., Philipson K. and Kreyling W. G. Negligible clearance of ultrafine particles retained in healthy and affected human lungs. European Respiratory Journal 2006; 28(2): 286-90.
Yang R. S. H., Louis W. C., Jui-Pin W., Ming-Hsien T., Hsiu-Jen W. and Yu-Chun K. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environmental Health Perspectives (EHP) 2007; 115(9): 1339-43.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊