(35.168.111.204) 您好!臺灣時間:2020/07/04 00:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:薛子威
研究生(外文):Tzu-Wei Hsueh
論文名稱:鎳對於心臟調節功能的影響:氧化壓力與發炎反應扮演的角色
論文名稱(外文):Effects of Nickel on Autonomic Regulation: Role of Oxidative Stress and Inflammation
指導教授:鄭尊仁鄭尊仁引用關係
指導教授(外文):Tsun-Jen Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:73
中文關鍵詞:心率變異性氧化壓力發炎反應
外文關鍵詞:Heart rate variabilityNickelOxidative stressInflammation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大氣微粒的成分,在許多的研究中証實會引起不良的健康效應,除了肺部傷害之外,也可能導致心血管的毒性。流行病學研究顯示氧化壓力與發炎反應對於易感受族群的心率變異性有顯著的相關性,然而實際影響心率變異性的機制為何,需要毒理學研究的証實。
我們以自發性高血壓大鼠(SHR)與正常大鼠(WKY)作比較,探討抗氧化壓力較差的大鼠在暴露鎳以後,其心率變異性的表現與健康大鼠的差異,更進一步給予自發性高血壓大鼠抗氧化劑(N-Acetylcysteine, NAC)及抗發炎藥物(Celecoxib)調控其抗氧化能力及抗發炎反應,探討氧化壓力與發炎反應在鎳引起心率變異性改變中所扮演的角色。本研究以self-control為實驗設計,於實驗動物暴露NiSO4後連續72小時收集心跳資料,進一步分析其心率變異性。
研究發現,相較於WKY,自發性高血壓大鼠的心率變異改變量較高,就ANN而言,從暴露後12到72小時,SHR的改變量皆明顯高於WKY,經過NAC及Celecoxib的給予之後,SHR的改變幅度減少,給予NAC四次或Celecoxib四次之後,SHR的ANN在各時間點上則與WKY無達到統計上顯著差異,LnSDNN及LnRMSSD也有同樣的趨勢但不如ANN明顯。以統計模式比較SHR各組與WKY的差異,使用二次曲線可描述SHR扣掉WKY後的HRV改變趨勢,其ANN估計值為-0.001(95%CI: -0.0014, -0.0005);LnSDNN為-0.0191(95%CI: -0.0244, -0.0138),LnRMSSD為-0.0235(-0.0300, -0.0170),p value<0.05。給予四次NAC和Celecoxib後則與WKY無顯著差異。
整體而言,鎳對於心血管的效應可能與抗氧化壓力與抗發炎反應有關,並且隨著藥物給予的劑量不同,在心率變異性上反應出的表現也不同。微粒中的成分眾多,本研究使用單一成分的暴露雖然並不能完全呈現微粒影響HRV的機制,但也顯示出氧化壓力與發炎反應在此的重要性,後續的毒理學研究需要嘗試更多種類的微粒成分,以及更深入的探討微粒影響心臟調節功能的機制。
The components of ambient particle may induce not only pulmonary injury but also cardiovascular diseases. Epidemiology studies have observed that oxidative stress and inflammation may be associated with the alterations of heart rate variability, especially in some susceptible persons. But the mechanism of these associations is unclear.
Spontaneously hypertensive rats (SHR) were compared with Wistar Kyoto (WKY) rats after nickel sulfate exposure. We investigated the difference of HRV change between SHR and WKY. Additionally, in order to establish the role of oxidative stress and inflammatory effect on HRV, we used N-acetylcysteine (NAC) and Celecoxib to modify the anti-oxidative and anti-inflammatory capability of SHR. This study was based on a self-control study design. We used telemetry transmitters and collected 72 hours ECG data after NiSO4 exposure. The parameters of HRV such as ANN, LnSDNN, and LnRMSSD were calculated from the ECG data.
After NiSO4 exposure, we found that SHR had greater ANN change than WKY (p<0.05). After four doses of NAC and Celecoxib treatment, the alterations of ANN on SHR were reduced to the levels caused by WKY.
In summary, nickel-induced HRV change may be caused by oxidative stress and inflammation. Further toxicological studies are needed to establish the mechanism of oxidative stress and inflammation affect on HRV.
致謝............................................i
目錄...........................................ii
表目錄........................................iii
圖目錄.........................................iv
摘要............................................1
Abstract........................................3
ㄧ、前言........................................4
二、文獻探討....................................5
2-1 微粒污染與心血管疾病......................5
2-2 微粒與心率變異性..........................5
2-3 微粒導致的氧化壓力、發炎反應與心血管效應..7
2-4 微粒成分中之過渡金屬-鎳.................. 9
2-5 微粒毒性研究的疾病動物模式...............10
2-6 抗氧化壓力與抗發炎反應藥物...............11
三、材料與方法.................................12
3-1 動物模式及飼養環境.......................12
3-2 硫酸亞鎳溶液與暴露方式...................12
3-3 抗氧化劑N-acetylcysteine及抗發炎藥物Celecoxib...13
3-4 生理循環監測系統.........................13
3-5 實驗設計.................................14
3-6 資料處理及分析...........................14
3-7 統計檢定.................................15
四、實驗結果...................................17
4-1 原始資料分佈.............................17
4-2 Generalized estimation equation model....17
4-3 淨效應趨勢比較...........................18
4-4 統計模式比較.............................19
五、討論.......................................21
5-1 GEE model呈現各參數的變動趨勢............21
5-2 各時間點淨效應比較.......................22
5-3 統計模式比較.............................22
5-4 研究限制.................................24
5-5 結論.....................................24
六、參考文獻...................................41
七、附錄.......................................45

表目錄
表一、實驗動物分組及其藥物給予.................25
表二、SHR各組與WKY之ANN的差異估計值............35
表三、SHR各組與WKY之LnSDNN的差異估計值.........36
表四、SHR各組與WKY之LnRMSSD的差異估計值........37


圖目錄
圖一、各組實驗動物暴露後ANN原始資料分佈........26
圖二、各組實驗動物暴露後LnSDNN原始資料分佈.....27
圖三、各組實驗動物暴露後LnRMSSD原始資料分佈....28
圖四、GEE model呈現NiSO4對於各組實驗動物ANN之效應...29
圖五、GEE model呈現NiSO4對於各組實驗動物LnSDNN之效應..30
圖六、GEE model呈現NiSO4對於各組實驗動物LnRMSSD之效應..31
圖七、比較SHR實驗組與WKY在各時間點上的ANN的差異........32
圖八、比較SHR實驗組與WKY在各時間點上的LnSDNN的差異.....33
圖九、比較SHR實驗組與WKY在各時間點上的LnRMSSD的差異....34
圖十、各組ANN估計曲線..........................38
圖十一、各組LnSDNN估計曲線.....................39
圖十二、各組LnRMSSD估計曲線....................40
Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC, Tager I. 2004. Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals From the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 109: 2655-2671.
Cavallari JM, Eisen EA, Fang SC, Schwartz J, Hauser R, Herrick RF, Christiani DC. 2008. PM2.5 metal exposures and nocturnal heart rate variability: a panel study of boilermaker construction workers. Environmental Health 7:36.
Chahine T, Baccarelli A, Litonjua A, Wright RO, Suh H, Gold DR, Sparrow D, Vokonas P, Schwartz J. 2007. Particulate Air Pollution, Oxidative Stress Genes, and Heart Rate Variability in an Elderly Cohort. Environ Health Perspect. 115:1617-1622.
Chang CC, Hwang JS, Chan CC, Wang PY, Hu TH, Cheng TJ. 2005. Effect of Concentrated Ambient Particle on Heart Rate Variability in Spontaneously Hypertensive Rats. J Occup Health. 47: 471-480.
Chen LC, Hwang JS. 2005. Effects of Subchronic Exposures to Concentrated Ambient Particles (CAPs) in Mice: IV. Characterization of Acute and Chronic Effects of Ambient Air Fine Particulate Matter Exposures on Heart-Rate Variability. Inhalation Toxicology. 17: 209–216.
Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS. 2007. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med. 176: 370-376.
Fabricio AS, Veiga FH, Cristofoletti R, Navarra P, Souza GE. 2005. The effects of selective and nonselective cyclooxygenase inhibitors on endothelin-1-induced fever in rats. Am J Physiol Regul Integr Comp Physiol. 288: R671-677.
Gilmour PS, Schladweiler MC, Richards JH, Ledbetter AD, Kodavanti UP. 2004. Hypertensive rats are susceptible to TLR4-mediated signaling following exposure to combustion source particulate matter. Inhalation Toxicology. 1:5-18.
Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, Verrier R. 2000. Ambient pollution and heart rate variability. Circulation. 101:1267-1273
Gurgueira SA, Lawrence J, Coull B, Murthy K, Beatriz GF. 2002. Rapid Increases in the Steady-State Concentration of Reactive Oxygen Species in the Lungs and Heart after Particulate Air Pollution Inhalation. Environ Health Perspect 110: 749–755.
Huang Y, Liu J, Wang LZ, Zhang WY, Zhu XZ. 2005. Neuroprotective effects of cyclooxygenase-2 inhibitor celecoxib against toxicity of LPS-stimulated macrophages toward motor neurons. Acta Pharmacol Sin. 26:952-958.
Kodavanti UP, Schladweiler MC, Ledbetter AD, Watkinson WP, Campen MJ, Winsett DW, Richards JR, Crissman KM, Hatch GE, Costa DL. 2000. The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicol Appl Pharmacol. 164: 250-63.
Lippmann M, Ito K, Hwang JS, Maciejczyk P, Chen LC. 2006. Cardiovascular effects of nickel in ambient air. Environ Health Perspect. 114: 1662-1669.
Miyamoto K, Miyake S, Mizuno M, Oka N, Kusunoki S, Yamamura T. 2006. Selective COX-2 inhibitor celecoxib prevents experimental autoimmune encephalomyelitis through COX-2-independent pathway. Brain. 129: 1984–1992.
Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, Curhan GC, Rifai N, Cannuscio CC, Stampfer MJ, Rimm EB. 2004. Inflammatory markers and the risk of coronary heart disease in men and women. 351: 2599-2610.
Rahman I, MacNee W. 1999. Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. Am J Physiol. 277:L1067-1088.
Rhoden CR, Lawrence J, Godleski JJ, González-Flecha B. 2004. N-acetylcysteine prevents lung inflammation after short-term inhalation exposure to concentrated ambient particles. Toxicol Sci. 79: 296-303.
Rhoden CR, Wellenius GA, Ghelfi E, Lawrence J, González-Flecha B. 2005. PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation. 1725: 305-313.
Schmelzer KR, Inceoglu B, Kubala L, Kim IH, Jinks SL, Eiserich JP, Hammock BD. 2006. Enhancement of antinociception by coadministration of nonsteroidal anti-inflammatory drugs and soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci U S A. 103:13646-13651.
Schwartz J, Park SK, O''Neill MS, Vokonas PS, Sparrow D, Weiss S, Kelsey K. 2005. Glutathione-S-transferase M1, obesity, statins, and autonomic effects of particles: gene-by-drug-by-environment interaction. Am J Respir Crit Care Med. 172: 1529-1533.
Shinmura K, Xuan YT, Tang XL, Kodani E, Han H, Zhu Y, Bolli R. 2002. Inducible nitric oxide synthase modulates cyclooxygenase-2 activity in the heart of conscious rabbits during the late phase of ischemic preconditioning. Circ Res. 90:602-8.
Takatori A, Ishii Y, Itagaki S, Kyuwa S, Yoshikawa Y. 2004. Amelioration of the beta-cell dysfunction in diabetic APA hamsters by antioxidants and AGE inhibitor treatments. Diabetes Metab Res Rev. 20: 211-218.
Tankersley CG, Campen M, Bierman A, Flanders SE, Broman KW, Rabold R. 2004. Particle effects on heart-rate regulation in senescent mice. Inhalation Toxicology. 16: 381-390.
Thomaidis NS, Bakeas EB, Siskos PA. 2003. Characterization of lead, cadmium, arsenic and nickel in PM2.5 particles in the Athens atmosphere, Greece. Chemosphere 52: 959–966.
Urmila PK, Mette CJ, Judy RR, Daniel LC. 2001. Acute Lung Injury from Intratracheal Exposure to Fugitive Residual Oil Fly Ash and Its Constituent Metals in Normo- and Spontaneously Hypertensive Rats. Inhalation Toxicology. 13:37–54.
Wheeler A, Zanobetti A, Gold DR, Schwartz J, Stone P, Suh HH. 2006. The relationship between ambient air pollution and heart rate variability differs for individuals with heart and pulmonary disease. Environ Health Perspect. 114: 560-566.
William DH, Daniel RP, Alyssa PG, Michelle RD, Scott CW, George DL, Thomas RK. 2002. Dose-Related Protection from Nickel-Induced Lung Injury in Transgenic Mice Expressing Human Transforming Growth Factor-α. American Journal of Respiratory Cell and Molecular Biology. 26: 430-437.
Xiao GG, Wang M, Li N, Loo JA, Nel AE. 2003. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem. 278: 50781-50790.
Zanobetti A, Canner MJ, Stone PH, Schwartz J, Sher D, Eagan-Bengston E, Gates KA, Hartley LH, Suh H, Gold DR. 2004. Ambient pollution and blood pressure in cardiac rehabilitation patients. Circulation. 110: 2184-2189.
Zhang QW, Kusaka Y, Zhu XQ, Sato K, Mo YQ, Kluz T, Donaldson K. 2003. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J Occup health; 45: 23-30.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔