跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/14 06:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石潔明
研究生(外文):Jie-Ming Shih
論文名稱:客運站與機車停車場次微米微粒特性之研究
論文名稱(外文):Characterization of Submicron Number Concentration Particles at Bus Station and Scooter Parking Garage
指導教授:詹長權詹長權引用關係
指導教授(外文):Chang-Chuan Chan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:41
中文關鍵詞:次微米微粒超細粒徑微粒車流量
外文關鍵詞:submicronultrafinetraffic volume
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過往的研究中發現交通工具已經成為空氣中微粒的主要汙染源,並且發現柴油引擎以及汽油引擎所產生的微粒大部分均位於次微米(submicron)之下,近年的研究中發現次微米微粒(<1μm)對於人體健康有更大的影響,動物及細胞實驗發現次微米微粒會造成大鼠的呼吸道上皮細胞有明顯的發炎反應,氧化壓力顯著的增加,並穿過粒線體膜對粒線體造成傷害,流行病學也發現長時間暴露於次微米粒徑微粒下會造成健康人血中嗜中性白血球增加,每秒呼吸容積(FEV1)、尖峰吐氣流量(PEF)降低,並會造成敏感族群(年長、呼吸道疾病)的心跳變異率顯著降低,收縮、舒張壓及血壓的上升。
本研究針對台北市純柴油與純汽油排放源,國光客運西站以及峨嵋機車停車場,採集環境中次微米以下微粒粒數濃度資料,以及紀錄兩地點經過採樣儀器之車流量,以了解次微米微粒在環境中濃度、粒徑分布,次微米微粒(<1μm)與超細粒徑微粒(<100 nm)與排放強度間之關係。
本研究利用Grimm SMPS+C於2008年2月20-22日、10月28-30日,分別在國光客運西站候車月台處以及峨眉停車場B1兩地點,進行連續為時72小時進行粒徑範圍11.1nm-1083.3 nm之微粒採樣並同時紀錄兩地點車流量資料,利用簡單線性迴歸( Simple linear regression )分析車流量與次微米粒徑微粒間之關係。
研究結果發現國光客運西站平均次微米微粒數量濃度為9.96×105 cm-3,峨嵋停車場平均數量濃度為2.71×106 cm-3,100 nm以下微粒粒數濃度佔總數量濃度的90%;巴士站與機車停車場之次微米微粒數量濃度在車流量尖峰時段與非尖鋒時段有明顯的差異,研究利用簡單線性迴關檢驗車流量與次微米微粒以及超細粒徑微粒間之關係,發現巴士站每小時車流量對於次微米(R2=0.523)與超細粒徑微粒(R2=0.533)數量濃度均有高解釋力,機車停車場每小時車流量亦對於次微米(R2=0.802)與超細粒徑微粒(R2=0.767)數量濃度均有高度解釋力,此外研究中發現巴士站中每小時車流量可解釋次微米以下粒徑範圍中271.8 nm以下之微粒,機車停車場每小時車流量則對於11.1 nm-27 nm粒徑範圍之微粒以及27 nm- 124.1 nm間微粒均有高解釋力
巴士站尖峰時段次微米微粒數量濃度為非尖峰時段的27倍,機車停車場尖峰時段次微米微粒數量濃度為非尖峰時段的12倍,其中機車停車場的尖峰時段濃度以及非尖峰時段濃度均高於巴士站;使用巴士站使用柴油以及機車停車場使用汽油之車輛車流量對於次微米微粒與超細粒徑微粒均有高解釋力,並且環境半開放之機車停車場解釋力高於巴士站。
The purpose of this study is to characterize NC11.1-1083.3, NC11.1-100(number concentration of particle with size 11.1 nm - 1083.3 and 11.1 nm - 100 nm)at bus station and scooter parking garage in Taipei and to understand the relation between particle number concentration and emission strength in two sampling sites.
This submicron particle number concentration and size distribution was measured with a scanning mobility particle sizer(SMPS+C)and temperature and relative humidity were also measured at bus station and scooter parking garage in Taipei from February 20th to 22nd and October 28th to 30th, 2008 , respectively. The sampling period at each site is 72 hours. We also documented the traffic volume and used simple linear regression to understand the correlation between submicron particle number concentration and emission strength.
Average NC11.1-1083.3 at bus station and scooter parking garage were 9.96×105 cm-3, 2.71×106 cm-3 respectively, and are about 90% of particle number under 100 nm. There were significant diurnal variation in concentrations and traffic volume at bus station and scooter parking garage. There were positive correlations between NC11.1-1083.3, NC11.1-100 and traffic volume. The R-square for NC11.1-1083.3 and NC11.1-100 were 0.523 and 0.533 at bus station and 0.802 and 0.767 at scooter parking garage. There were also positive correlation between traffic volume and particle size under 271.8 nm at bus station and 11.1 nm -27 nm and 27 nm – 124.1 nm at scooter parking garage.
The number concentration in rush hour was 27 times higher than in none rush hour at bus station and peak hour was 11 times higher then none peak hour at scooter parking garage. Both diesel and gasoline powered vehicle were highly correlation with particle under submicrometer at bus station and scooter parking garage. The correlation between particle number concentration between traffic volume in semi-open space was higher than in open space.
中文摘要 I
ABSTRACT III
目錄 IV
表目錄 VI
圖目錄 VII
1. 前言 1
1.1. 次微米微粒交通工具排放研究文獻探討 2
1.2. 次微米微粒動物毒理效應文獻探討 5
1.3. 細胞毒理效應文獻探討 5
1.4. 微粒毒理人體試驗文獻探討 6
2. 研究目的 8
3. 材料與方法 9
3.1. 微粒採樣地點 9
3.1.1. 巴士站採樣環境 9
3.1.2. 機車停車場採樣環境 11
3.1.3. 採樣方法 13
3.2. 採樣儀器 13
3.3. 統計分析 16
4. 研究結果 18
4.1. 巴士站採樣結果 18
4.1.1. 巴士站環境中次微米微粒微粒特性 18
4.1.2. 巴士站不同時段次微米微粒特性 19
4.1.3. 巴士站微粒微粒數量濃度與車輛數相關性 21
4.1.4. 巴士站逐時車流量變化影響之粒徑範圍 24
4.2. 機車停車場採樣結果 25
4.2.1. 機車停車場環境中次微米微粒特性 25
4.2.2. 機車停車場不同時段次微米微粒特性 25
4.2.3. 機車停車場微粒數量濃度與車輛數相關性 27
4.2.4. 機車逐時車流量變化影響之粒徑範圍 30
5. 討論 31
6. 研究限制 36
7. 結論與建議 37
8. 參考文獻 39
J.J.M. Berdowski, W. Mulder, C. Veldt, A.J.H. Vesschedijk and P.Y.J. Zandved, Particulate Matter Emissions (PM10-PM2.5-PM0.1) in Europe in 1990 and 1993, TNO-MEP-R 96/472(1997).
D.C. Chalupa, P.E. Morrow, G. Oberdorster, M.J. Utell and M.W. Frampton, Ultrafine particle deposition in subjects with asthma, Environ Health Perspect 112(2004), pp. 879-882.
C.C. Chan, K.J. Chuang, G.M. Shiao and L.Y. Lin, Personal exposure to submicrometer particles and heart rate variability in human subjects, Environ Health Perspect 112(2004), pp. 1063-1067.
M.C.O. Chang et al., Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources, Journal of the Air & Waste Management Association (1995) 54(2004), pp. 1494-1505.
K.J. Chuang, C.C. Chan, T.C. Su, L.Y. Lin and C.T. Lee, Associations between particulate sulfate and organic carbon exposures and heart rate variability in patients with or at risk for cardiovascular diseases, Journal of Occupational and Environmental Medicine 49(2007), pp. 610-617.
D. Etissa, M. Mohr, D. Schreiber and P.A. Buffat, Investigation of particles emitted from modern 2-stroke scooters, Atmospheric Environment 42(2008), pp. 183-195.
M. Geiser et al., Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells, Environmental Health Perspectives 113(2005), pp. 1555-1560.
G.S.W. Hagler et al., Ultrafine particles near a major roadway in Raleigh, North Carolina: Downwind attenuation and correlation with traffic-related pollutants, Atmospheric Environment 43(2009), pp. 1229-1234.
R.M. Harrison, M. Jones and G. Collins, Measurements of the physical properties of particles in the urban atmosphere, Atmospheric Environment 33(1999), pp. 309-321.
R. Hauser, J.J. Godleski, V. Hatch and D.C. Christiani, Ultrafine particles in human lung macrophages, Arch Environ Health 56(2001), pp. 150-156.
N.S. Holmes, L. Morawska, K. Mengersen and E.R. Jayaratne, Spatial distribution of submicrometre particles and CO in an urban microscale environment, Atmospheric Environment 39(2005), pp. 3977-3988.
S. Huang, M. Hsu and C. Chan, Effects of Submicrometer Particle Compositions on Cytokine Production and Lipid Peroxidation of Human Bronchial Epithelial Cells, Environmental Health Perspectives 111(2003).
L.S. Hughes, G.R. Cass, J. Gone, M. Ames and I. Olmez, Physical and Chemical Characterization of Atmospheric Ultrafine Particles in the Los Angeles Area, Environ. Sci. Technol. 32(1998), pp. 1153-1161.
S. Janhäll, K.F.G. Olofson, P.U. Andersson, J.B.C. Pettersson and M. Hallquist, Evolution of the urban aerosol during winter temperature inversion episodes, Atmospheric Environment 40(2006), pp. 5355-5366.
W.G. Kreyling et al., Diverging long-term trends in ambient urban particle mass and number concentrations associated with emission changes caused by the German unification, Atmospheric Environment 37(2003), pp. 3841-3848.
Y.-C. Lei, C.-C. Chan, P.-Y. Wang, C.-T. Lee and T.-J. Cheng, Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats, Environmental Research 95(2004), pp. 71-76.
N. Li et al., Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage, Environ Health Perspect 111(2003), pp. 455-460.
L. Morawska, N.D. Bofinger, L. Kocis and A. Nwankwoala, Submicrometer and Supermicrometer Particles from Diesel Vehicle Emissions, Environmental science & technology 32(1998), pp. 2033-2042.
L. Morawska, E.R. Jayaratne, K. Mengersen, M. Jamriska and S. Thomas, Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends, Atmospheric Environment 36(2002), pp. 4375-4383.
A. Nemmar et al., Diesel Exhaust Particles in Lung Acutely Enhance Experimental Peripheral Thrombosis, Circulation 107(2003), pp. 1202-1208.
G. Oberdorster et al., Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats, J. Toxicol. Env. Health Pt A 65(2002), pp. 1531-1543.
P. Penttinen et al., Ultrafine particles in urban air and respiratory health among adult asthmatics, Eur Respir J 17(2001), pp. 428-435.
A. Peters, H.E. Wichmann, T. Tuch, J. Heinrich and J. Heyder, Respiratory effects are associated with the number of ultrafine particles, Am J Resp Crit Care 155(1997), pp. 1376-1383.
E. Roth, D. Kehrli, K. Bonnot and G. Trouv, Size distributions of fine and ultrafine particles in the city of Strasbourg: Correlation between number of particles and concentrations of NOx and SO2 gases and some soluble ions concentration determination, Journal of Environmental Management 86(2008), pp. 282-290.
S. SALVI et al., Acute Inflammatory Responses in the Airways and Peripheral Blood After Short-Term Exposure to Diesel Exhaust in Healthy Human Volunteers, Am. J. Respir. Crit. Care Med. 159(1999), pp. 702-709.
J.P. Shi, R.M. Harrison and F. Brear, Particle size distribution from a modern heavy duty diesel engine, The Science of The Total Environment 235(1999), pp. 305-317.
P.A. Steerenberg et al., Diesel exhaust particles induced release of interleukin 6 and 8 by (primed) human bronchial epithelial cells (BEAS 2B) in vitro, Exp Lung Res 24(1998), pp. 85-100.
P. Wahlin, F. Palmgren and R. Van Dingenen, Experimental studies of ultrafine particles in streets and the relationship to traffic, Atmospheric Environment 35(2001), pp. 63-69.
H. Yeh, B. Muggenburg and H. J.R., In vivo deposition of inhaled ultrfine particles in the respiratory track of Rhesus monkey., Aerosol Science & Technology 36(1997), pp. 4323-4335.
L.-H. Young and G.J. Keeler, Characterization of Ultrafine Particle Number Concentration and Size Distribution During a Summer Campaign in Southwest Detroit. Journal of the Air & Waste Management Association (1995), Air & Waste Management Association (2004), pp. 1079-1090.
I.J. Yu et al., Pattern of deposition of stainless steel welding fume particles inhaled into the respiratory systems of Sprague-Dawley rats exposed to a novel welding fume generating system, Toxicology Letters 116(2000), pp. 103-111.
Y.-M. Zhou, C.-Y. Zhong, I.M. Kennedy and K.E. Pinkerton, Pulmonary responses of acute exposure to ultrafine iron particles in healthy adult rats, Environmental Toxicology 18(2003), pp. 227-235.
Y. Zhu, W.C. Hinds, S. Kim, S. Shen and C. Sioutas, Study of ultrafine particles near a major highway with heavy-duty diesel traffic, Atmospheric Environment 36(2002a), pp. 4323-4335.
Y. Zhu, W.C. Hinds, S. Kim and C. Sioutas, Concentration and Size Distribution of Ultrafine Particles Near a Major Highway Air & Waste Management Association 52(2002b), pp. 1032-1042.
Y.F. Zhu, W.C. Hinds, S. Shen and C. Sioutas, Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles, Aerosol Science and Technology 38(2004), pp. 5-13.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top