跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昭男
研究生(外文):Chao-Nan Lin
論文名稱:台灣貓冠狀病毒感染之病毒分離、演化及抗病毒藥物篩選
論文名稱(外文):Virus isolation, evolution and screening of the effective antiviral drugs of feline coronavirus infection in Taiwan
指導教授:闕玲玲
指導教授(外文):Ling-Ling Chueh
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:120
中文關鍵詞:貓冠狀病毒基因型別病毒分離病毒演化抗病毒藥NTU156
外文關鍵詞:feline coronavirusgenotypevirus isolationvirus evolutionantiviral agentNTU156
相關次數:
  • 被引用被引用:0
  • 點閱點閱:784
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
貓傳染性腹膜炎 (feline infectious peritonitis; FIP) 為造成幼貓死亡的重要傳染病之一,其致病原為貓冠狀病毒 (feline coronavirus; FCoV),除了造成FIP,此病亦能造成不顯性感染或輕微腸炎。FCoV廣泛分布於全世界貓族群中,但只有5-12%的血清陽性貓隻最後會演變成FIP。截至目前為止,臨床上並無單一血清學或分子診斷可以區分低毒力或有毒力病毒,亦無有效的疫苗可以預防此病之發生,及無有效治療方法可用。因此,本論文為針對台灣地區貓冠狀病毒感染之研究, 主要分成六部分,一 、貓冠狀病毒感染之調查;二、ORF7b 基因之分析;三、不同基因型別病毒之調查及與FIP發病間相關性之探討;四、FIP自然感染病例之病毒分離;五、台灣貓冠狀病毒分離株全基因之定序與病毒演化之分析;六、有效抑制病毒複製藥物之篩選。2000年至2009年間,有1703個FIP懷疑病例由台大動物醫院送檢至本實驗室進行FCoV檢測,結果發現檢出率為38.2% (651/1703),其中有66個病例透過組織病理學檢查確診為FIP,此些FIP發病貓年紀以小於6月齡為主 (50.7%;34/67),FIP發病貓隻檢體中存在較高量的病毒。針對來自有FIP病史的不同多貓家庭84隻健康貓進行FCoV檢測,結果發現有67.9% (57/84) 健康貓隻為FCoV陽性。由此部份研究結果顯示台灣地區FCoV感染相當普遍,特別發生於曾出現過FIP病例之多貓環境中之貓隻 (第一部份)。ORF 7b的缺失 (deletion),曾被懷疑與病毒毒力降低有關,然而我們的研究結果發現ORF 7b的缺失不只出現在低毒力/腸道型病毒,也可存在有毒力/FIP病毒上 (第二部份)。FCoV以血清中和試驗可被區分成二個血清型,在此研究中我們發現,雖然第一型 FCoV的感染率非常高,與FIP發病較具顯著相關性的病毒卻為第二型 (P=0.0046)。比對五年間的代表株病毒的S gene序列,結果發現第一型 FCoV的變異性 (6.2-11.7%) 較第二型 (0.6-3.2%) 高(第三部份)。第四部份、此研究由臨床上一隻4.5 月齡小貓自然發生之FIP 病例,自其胸水與貓全胚胎細胞株進行共同培養 (co-cultivation),成功地分離到本土株貓冠狀病毒,這是一個生長特性異於現存FCoV 的新病毒分離株,為台灣的首度報告,其命名為FCoV/NTU156/P/’07 (NTU156)。我們進一步進行台灣第二型分離株NTU156全長基因定序及另一個自然感染第二型病毒株部份基因,以軟體分析其重組點,發現NTU156的重組點位於RNA-dependent RNA polymerase (RdRp) 及M基因,另一第二型病毒重組點亦位於M基因,與國外代表株相比較,代表株的重組點位於RDRP (更上游900 nts) 及ORF3-E基因,由此結果發現每一第二型FCoV可能皆來自於獨自的重組事件。進一步分析重組熱點 (hot spot) 之序列發現可能為U(C/U/G/A)U(U/A)A (第五部份)。最後我們使用本土貓冠狀病毒株感染貓全胚胎細胞進行抗病毒藥物之篩選,當Galanthus nivalis agglutinin (GNA) 及nelfinavir合併給與時,則具加乘作用地完全抑制病毒複製,此研究結果指出,合併使用GNA及nelfinavir可做為未來預防及早期治療FIP之用 (第六部份)。
Feline infectious peritonitis (FIP) is one of the major infectious causes of mortality in kitten. The causative agent, feline coronavirus (FCoV) is also associated with mild or subclinical enteric infections. Despite the high prevalence of FCoVs in feline populations around the world, only 5-12% of seropositive cats develop FIP. Up to present, there is not a single virological or serolsogical assay that can distinguish virulent from avirulent virus, moreover no effective vaccine or therapy available for FIP. The objectives of this study were to investigate the prevalence of FCoV infection in Taiwan (part I), to further clarify the correlation between FIP, ORF 7b (part II) and different types of FCoV S gene (part II), to isolate the first local FCoV isolate (part IV), to explore the evolutionary insights of type II (part V) and to screen the effective compound for their antiviral activity against a local FCoV strain in fcwf-4 cells. During 2000 to 2009, a total of 1703 cases with a history of FIP-suspected cats from National Taiwan University Animal Hospital were subjected to this study (Part I). FCoV RNA was detected from 651 (38.2%) cats. Among the 67 cases with definite diagnosis of FIP, the highest incidence was found in kittens under 6-months old (50.7%, 34/67). Significantly highest viral load in the effusive fluids of cats from confirmed FIP cases. Eighty-four clinical healthy cats co-hatitated with the FIP cats from various multi-cat households were subjected to further examination. About 67.9% (57/84) of the clinically healthy cats were FCoV positive. These data suggested that the prevalence of FCoV infection is widely in Taiwan and especially in multi-cat population. The open reading frame (ORF) 7b of FCoV has been speculated to play a determining role in virulence as deletions were found to be associated with avirulent viruses. Our part II study revealed that deletions in the ORF7b gene are not constrained to low pathogenicity/enteric biotypes but also associated with pathogenicity/FIP biotypes of FCoV. On the basis of in vitro neutralization tests, FCoVs can be divided into two serotypes. Our results showed that irrespective of the predominance of type I FCoV infection in Taiwan, type II FCoV demonstrated a higher correlation with FIP. Analysis of partial S gene sequences of the local type I and II FCoVs strains revealed that type I viruses were more genetically divergent (6.2-11.7%) than type II viruses (0.6-3.2%) within the 5-year study period (part III). By co-cultivation of pleural effusion from a 4.5-month-old FIP kitten with feline fcwf-4 cells, a local FCoV was isolated. This novel FCoV isolate with distinct growth characteristics is denominated as FCoV/NTU156/P/’07 (NTU156), the first FCoV strain in Taiwan (part IV). We further explore the evolutionary insights of local FCoVs, a complete genome of one local type II FCoV NTU156 and partial genome sequence from one type II virus NTU26-2 were determined. The genome of FCoV NTU156 was found to be 28,897 nucleotides in length, excluding the 3’ polyadenylated tail. Analysis of the sequence identified conserved open reading frames and revealed an overall genome organization similar to known FCoVs. Bearing an in frame deletion of 442 nucleotides in the ORF3c, the genome size of NTU156 was found to be the smallest among subgroup 1a (FCoV Black, FCoV C1Je, and FCoV 79-1146). Bootscan analysis of NTU156 revealed two crossover events took place between type I FCoV and type II CCoV. One of the possible recombination site was located in RNA-dependent RNA polymerase (RdRp) gene and the other in M gene. Analysis of sequence around possible recombination spot of another local type II virus NTU26-2 identified a possible recombination site located in M gene. Comparing the finding from our local viruses with the prototype FCoV 79-1146 strain, of which one possible recombination was located in RdRp (further upstream 900 nucleotides) and the other in ORF 3-E gene, neither of them were identical to our local strains. These data indicated that each type II FCoV strain might has arisen from individual recombination event. Multiple alignments further narrowed the potential hot spot of RNA recombination to a pentanucleotide U(C/U/G/A)U(U/A)A (part V). In our search for agents that may prove clinically effective against FCoV infection, a local FCoV strain was isolated and subsequently used in the screening tests. Our results show that combined use of Galanthus nivalis agglutinin and nelfinavir to FCoV-infected cells, a synergistic antiviral effect with complete blockage of viral multiplication was observed. These results suggest that the combined use of GNA and nelfinavir has therapeutic potential in the prophylaxis and treatment of cats with early-diagnosed FIP (part VI).
目錄

中文摘要.........................................................................................................................IX
英文摘要.........................................................................................................................XI

第一章、緒言...................................................................................................................1
第二章、文獻探討...........................................................................................................2
2.1 貓傳染性腹膜炎之發現歷史..................................................................................2
2.2 病毒分類..................................................................................................................2
2.3 基因體特性..............................................................................................................3
2.4 流行病學與病毒傳播..............................................................................................5
2.5 血清型別..................................................................................................................5
2.6 免疫反應與致病機制..............................................................................................7
2.7 病毒分離..................................................................................................................9
2.8 臨床症狀..................................................................................................................9
2.9 臨床診斷................................................................................................................10
2.10 治療與預防..........................................................................................................11
第三章、研究背景..............................................................................................................13
第一節 貓冠狀病毒感染之調查.................................................................................13
第二節 ORF7b與病毒致病相關性之分析.................................................................13
第三節 不同基因型別病毒流行病學調查及與FIP關聯性之探討...........................14
第四節 自FIP自然感染病例中分離與鑑定台灣貓冠狀病毒...................................14
第五節 台灣貓冠狀病毒分離株全基因定序及病毒演化分析.................................14
第六節 有效抑制病毒複製藥物之篩選...................................................................................15
第四章、材料與方法.........................................................................................................17
第一節 貓冠狀病毒感染之調查.................................................................................17
4.1.1 臨床檢體之採集.............................................................................................17
4.1.2 檢體製備及反轉錄反應.................................................................................17
4.1.3 貓冠狀病毒之篩選.........................................................................................18
4.1.4 PCR產物電泳之分析......................................................................................18
第二節 ORF7b與病毒致病相關性之分析.................................................................18
4.2.1 臨床檢體之採集及貓冠狀病毒之篩選.........................................................18
4.2.2 檢體之製備及反轉錄反應.............................................................................19
4.2.3 ORF7b gene之半巢式聚合酵素鍊鎖反應.....................................................19
4.2.4 PCR產物定序及序列之分析..........................................................................20
第三節 不同基因型別病毒流行病學調查及與FIP關聯性之探討...........................20
4.3.1 動物及臨床檢體之採集.................................................................................20
4.3.2 檢體之製備及反轉錄反應.............................................................................20
4.3.3 S gene之聚合酵素鍊鎖反應..........................................................................21
4.3.4 PCR產物定序及序列之分析..........................................................................21
4.3.5 統計分析.........................................................................................................22
第四節 自FIP自然感染病例中分離與鑑定台灣貓冠狀病毒...................................22
4.4.1 細胞培養.........................................................................................................22
4.4.2 病毒分離.........................................................................................................22
4.4.3 冠狀病毒核酸之檢測.....................................................................................23
4.4.4 冠狀病毒抗原之檢測.....................................................................................24
4.4.5 病毒純化、定量及生長曲線.........................................................................24
第五節 台灣貓冠狀病毒分離株全基因定序及病毒演化分析.................................25
4.5.1 病毒株.............................................................................................................25
4.5.2 反轉錄與聚合酵素鍊鎖反應.........................................................................26
4.5.3 5’端及3’端cDNA端點快速增幅技術............................................................26
4.5.4 PCR產物定序..................................................................................................26
4.5.5 序列分析.........................................................................................................27
第六節 有效抑制病毒複製藥物之篩選...................................................................................27
4.6.1 試驗藥物.........................................................................................................27
4.6.2 細胞與病毒.....................................................................................................27
4.6.3 細胞存活試驗.................................................................................................27
4.6.4 抗病毒藥物之篩選.........................................................................................28
4.6.5 50%有效濃度試驗..........................................................................................28
4.6.6 藥物濃度依賴性試驗.....................................................................................28
4.6.7 有效藥物合併使用試驗.................................................................................29
4.6.8 統計分析.........................................................................................................29
第五章、結果.................................................................................................................30
第一節 貓冠狀病毒感染之調查.................................................................................30
5.1.1 貓隻之分類.....................................................................................................30
5.1.2 疑似FIP發病貓之貓冠狀病毒盛行率及不同臨床檢體之檢出率...............30
5.1.3 FIP發病貓隻與同居健康貓隻排毒之檢測...................................................30
5.1.4 健康貓及流浪貓之檢測.................................................................................31
第二節 ORF7b與病毒致病相關性之分析.................................................................31
5.2.1 貓冠狀病毒感染貓隻.....................................................................................31
5.2.2 ORF7b 序列之分析........................................................................................32
5.2.3 ORF7b 序列之比對........................................................................................32
第三節 不同基因型別病毒流行病學調查及與FIP關聯性之探討...........................33
5.3.1 不同型別貓冠狀病毒之盛行率.....................................................................33
5.3.2 不同型別貓冠狀病毒與FIP發病之關聯性...................................................33
5.3.3 不同型別貓冠狀病毒之基因比對及演化之分析.........................................34
第四節 自FIP自然感染病例中分離與鑑定台灣貓冠狀病毒...................................34
5.4.1 貓傳染性腹膜炎之確診及病毒分離.............................................................34
5.4.2 貓冠狀病毒分離株之病原確認.....................................................................35
5.4.3 One-step growth curve....................................................................................35
第五節 台灣貓冠狀病毒分離株全基因定序及病毒演化分析.................................36
5.5.1 貓冠狀病毒株NTU156全基因之分析...........................................................36
5.5.2 5’端及3’端非轉譯區及開放讀碼區..............................................................36
5.5.3 Subgroup 1 CoVs基因比對及親緣樹狀圖之分析........................................36
5.5.4 S基因分析與APN binding site之比較...........................................................37
5.5.5 貓冠狀病毒株NTU156重組點之分析...........................................................38
5.5.6 其他第二型 FCoV重組區域之比對及重組熱點之分析..............................38
第六節 有效抑制病毒複製藥物之篩選...................................................................................39
5.6.1 細胞存活試驗.................................................................................................39
5.6.2 抗病毒藥物之篩選.........................................................................................39
5.6.3 藥物濃度依賴性試驗.....................................................................................39
5.6.4 有效藥物合併使用試驗.................................................................................40
第六章、討論.................................................................................................................41
第一節 貓冠狀病毒感染之調查.................................................................................41
第二節 ORF7b與病毒致病相關性之分析.................................................................43
第三節 不同基因型別病毒流行病學調查及與FIP關聯性之探討...........................44
第四節 自FIP自然感染病例中分離與鑑定台灣貓冠狀病毒...................................46
第五節 台灣貓冠狀病毒分離株全基因定序及病毒演化分析.................................47
第六節 有效抑制病毒複製藥物之篩選...................................................................................50
第七章、結論.................................................................................................................53
第八章、展望.................................................................................................................55
第九章、參考文獻.........................................................................................................57


















表目錄

表1-1 各個臨床檢體數及FCoV陽性率.........................................................................76
表1-2 疑似發病及確診為FIP貓隻各檢體陽性率之比較..............................................76
表1-3 全世界貓冠狀病毒流行病學調查之比較..............................................................77
表2-1 ORF7b 增幅之特異性引子..................................................................................78
表2-2 40隻貓隻之健康狀況、基本資料及病毒命名...................................................79
表2-3 全世界之ORF7b定序結果...................................................................................80
表2-4 全世界ORF7b基因缺失病毒株之比較...............................................................81
表3-1 台灣貓冠狀病毒之分型及不同型別病毒之盛行率...........................................82
表3-2 不同型別貓冠狀病毒與FIP發病之關聯性.........................................................82
表3-3 10個進一步分析S基因序列的病例資料.............................................................83
表3-4 台灣地區第一型貓冠狀病毒序列之變異性.......................................................84
表3-5 台灣地區第二型貓冠狀病毒序列之變異性.......................................................84
表3-6 全世界不同型別貓冠狀病毒流行病學調查之比較............................................85
表4-1 貓小病毒及貓卡里西病毒特異性引子...............................................................86
表5-1 FCoV NTU156之開放讀碼區大小及transcription regulatory sequences...........87
表5-2 FCoV NTU156與其他group 1 CoV基因之相似性.............................................88
表5-2 已確認及推測之重組熱點...................................................................................89
表6-1 抗病毒藥物對貓全胚胎細胞之毒性及對FCoV之抗病毒作用.........................90




圖目錄

圖2-1 自臨床檢體分析FCoV ORF7b基因....................................................................91
圖2-2 ORF7b 基因序列之比對及親緣樹狀圖之分析..................................................92
圖3-1 12株第一型貓冠狀病毒株及3株犬冠狀病毒株之S gene 168 bp片段之比對分析.....................................................................................................................................93
圖3-2 11株第一型貓冠狀病毒株、2株犬冠狀病毒株及二株野生動物冠狀病毒株之S gene 168 bp片段之比對分析......................................................................................94
圖3-3 本土貓冠狀病毒株、犬冠狀病毒與文獻貓冠狀病毒株、犬冠狀病毒株及野生動物冠狀病毒株之部份S gene親緣樹狀圖之分析..................................................95
圖4-1 貓傳染性腹膜炎之確診.......................................................................................96
圖4-2 FIP發病貓隻之胸水與貓全胚胎細胞共同培養.................................................97
圖4-3 貓冠狀病毒核酸檢測...........................................................................................98
圖4-4 細胞培養上清液以nPCR或RT-nPCR排除其他貓病毒之汙染..........................99
圖4-5 貓冠狀病毒抗原之確認..............................................................................100-101
圖4-6 NTU156在貓全胚胎細胞之生長曲線...............................................................102
圖4-7 NTU156對貓腎細胞之敏感性...........................................................................103
圖5-1 FCoV NTU156之ORF3基因..............................................................................104
圖5-2 FCoV NTU156各基因與其他subgroup 1a CoVs之親緣樹狀圖...............105-107
圖5-3 FCoV NTU156 S基因之分析......................................................................108-110
圖5-4 FCoV NTU156全基因重組區域之分析.....................................................111-112
圖5-5 FCoV NTU156及NUT26-2重組區域序列比對.................................................113
圖5-6 FCoV 79-1146全基因重組區域之分析.............................................................114 圖5-7 FCoV 79-1146及79-1683重組區域序列比對.....................................................115
圖6-1 FCoV NTU156感染貓全胚胎細胞.....................................................................116
圖6-2 藥物抗病毒能力之評估..............................................................................117-118
圖6-3 藥物對不同病毒濃度依賴性試驗.....................................................................119圖6-4 Nelfinavir及GNA合併使用試驗........................................................................120
Addie, D.D., Jarrett, J.O., 1992a, Feline coronavirus antibodies in cats. Vet Rec 131, 202-203.
Addie, D.D., Jarrett, O., 1992b, A study of naturally occurring feline coronavirus infections in kittens. Vet Rec 130, 133-137.
Addie, D.D., Paltrinieri, S., Pedersen, N.C., 2004, Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium. J Feline Med Surg 6, 125-130.
Addie, D.D., Schaap, I.A., Nicolson, L., Jarrett, O., 2003, Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol 84, 2735-2744.
Addie, D.D., Toth, S., Murray, G.D., Jarrett, O., 1995, Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. American Journal of Vet Res 56, 429-434.
Atrasheuskaya, A., Petzelbauer, P., Fredeking, T.M., Ignatyev, G., 2003, Anti-TNF antibody treatment reduces mortality in experimental dengue virus infection. FEMS Immunol Med Microbiol 35, 33-42.
Banner, L.R., Keck, J.G., Lai, M.M., 1990, A clustering of RNA recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus. Virology 175, 548-555.
Banner, L.R., Lai, M.M., 1991, Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology 185, 441-445.
Barlough, J.E., Johnson-Lussenburg, C.M., Stoddart, C.A., Jacobson, R.H., Scott, F.W., 1985, Experimental inoculation of cats with human coronavirus 229E and subsequent challenge with feline infectious peritonitis virus. Can J Comp Med 49, 303-307.
Barlough, J.E., Scott, F.W., 1990, Effectiveness of three antiviral agents against FIP virus in vitro. Vet Rec 126, 556-558.
Barlough, J.E., Shacklett, B.L., 1994, Antiviral studies of feline infectious peritonitis virus in vitro. Vet Rec 135, 177-179.
Barlough, J.E., Stoddart, C.A., Sorresso, G.P., Jacobson, R.H., Scott, F.W., 1984, Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus. Lab Anim Sci 34, 592-597.
Battilani, M., Coradin, T., Scagliarini, A., Ciulli, S., Ostanello, F., Prosperi, S., Morganti, L., 2003, Quasispecies composition and phylogenetic analysis of feline coronaviruses (FCoVs) in naturally infected cats. FEMS Immunol Med Microbiol 39, 141-147.
Bell, E.T., Malik, R., Norris, J.M., 2006a, The relationship between the feline coronavirus antibody titre and the age, breed, gender and health status of Australian cats. Aust Vet J 84, 2-7.
Bell, E.T., Toribio, J.A., White, J.D., Malik, R., Norris, J.M., 2006b, Seroprevalence study of feline coronavirus in owned and feral cats in Sydney, Australia. Aust Vet J 84, 74-81.
Benetka, V., Kolodziejek, J., Walk, K., Rennhofer, M., Mostl, K., 2006, M gene analysis of atypical strains of feline and canine coronavirus circulating in an Austrian animal shelter. Vet Rec 159, 170-174.
Benetka, V., Kubber-Heiss, A., Kolodziejek, J., Nowotny, N., Hofmann-Parisot, M., Mostl, K., 2004, Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet Microbiol 99, 31-42.
Black, J.W., 1980, Recovery and in vitro cultivation of a coronavirus from laboratory-induced cases of feline infectious peritonitis (FIP). Vet Med Small Anim Clin 75, 811-814.
Brian, D.A., Baric, R.S., 2005, Coronavirus genome structure and replication. Curr Top Microbiol Immunol 287, 1-30.
Brooks, J.E., Rainer, A.C., Parr, R.L., Woolcock, P., Hoerr, F., Collisson, E.W., 2004, Comparisons of envelope through 5B sequences of infectious bronchitis coronaviruses indicates recombination occurs in the envelope and membrane genes. Virus Res 100, 191-198.
Can-Sahna, K., Soydal Ataseven, V., Pinar, D., Oguzoglu, T.C., 2007, The detection of feline coronaviruses in blood samples from cats by mRNA RT-PCR. J Feline Med Surg 9, 369-372.
Cave, T.A., Thompson, H., Reid, S.W., Hodgson, D.R., Addie, D.D., 2002, Kitten mortality in the United Kingdom: a retrospective analysis of 274 histopathological examinations (1986 to 2000). Vet Rec 151, 497-501.
Chomczynski, P., Sacchi, N., 1987, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Bioche 162, 156-159.
Christianson, K.K., Ingersoll, J.D., Landon, R.M., Pfeiffer, N.E., Gerber, J.D., 1989, Characterization of a temperature sensitive feline infectious peritonitis coronavirus. Arch Virol 109, 185-196.
Corapi, W.V., Olsen, C.W., Scott, F.W., 1992, Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus. J Virol 66, 6695-6705.
Cornelissen, E., Dewerchin, H.L., Van Hamme, E., Nauwynck, H.J., 2007, Absence of surface expression of feline infectious peritonitis virus (FIPV) antigens on infected cells isolated from cats with FIP. Vet Microbiol 121, 131-137.
de Groot, R.J., Maduro, J., Lenstra, J.A., Horzinek, M.C., van der Zeijst, B.A., Spaan, W.J., 1987, cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J Gen Virol 68, 2639-2646.
De Groot, R.J., Andeweg, A.C., Horzinek, M.C., Spaan, W.J., 1988, Sequence analysis of the 3''-end of the feline coronavirus FIPV 79-1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology 167, 370-376.
de Groot-Mijnes, J.D., van Dun, J.M., van der Most, R.G., de Groot, R.J., 2005, Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J Virol 79, 1036-1044.
Decaro, N., Mari, V., Campolo, M., Lorusso, A., Camero, M., Elia, G., Martella, V., Cordioli, P., Enjuanes, E., Buonavoglia, C., 2008, Recombinant Canine Coronaviruses Related to Transmissible Gastroenteritis Virus of Swine are Circulating in Dogs. J Virol, http://jvi.asm.org/cgi/reprint/JVI.01937-01908v01931?view=long&pmid=19036814.
Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., 2005, Replication of feline coronaviruses in peripheral blood monocytes. Arch Virol 150, 2483-2500.
Dewerchin, H.L., Cornelissen, E., Nauwynck, H.J., 2006, Feline infectious peritonitis virus-infected monocytes internalize viral membrane-bound proteins upon antibody addition. J Gen Virol 87, 1685-1690.
Dong, B.Q., Liu, W., Fan, X.H., Vijaykrishna, D., Tang, X.C., Gao, F., Li, L.F., Li, G.J., Zhang, J.X., Yang, L.Q., Poon, L.L., Zhang, S.Y., Peiris, J.S., Smith, G.J., Chen, H., Guan, Y., 2007, Detection of a novel and highly divergent coronavirus from asian leopard cats and Chinese ferret badgers in Southern China. J Virol 81, 6920-6926.
Dye, C., Siddell, S.G., 2005, Genomic RNA sequence of Feline coronavirus strain FIPV WSU-79/1146. J Gen Virol 86, 2249-2253.
Dye, C., Siddell, S.G., 2007, Genomic RNA sequence of feline coronavirus strain FCoV C1Je. J Feline Med Surg 9, 202-213.
Dye, C., Temperton, N., Siddell, S.G., 2007, Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines. J Gen Virol 88, 1753-1760.
Evermann, J.F., McKeirnan, A.J., Ott, R.L., 1991, Perspectives on the epizootiology of feline enteric coronavirus and the pathogenesis of feline infectious peritonitis. Vet Microbiol 28, 243-255.
Foley, J.E., Poland, A., Carlson, J., Pedersen, N.C., 1997, Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J Am Vet Med Assoc 210, 1313-1318.
Godet, M., Grosclaude, J., Delmas, B., Laude, H., 1994, Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68, 8008-8016.
Haagmans, B.L., Egberink, H.F., Horzinek, M.C., 1996, Apoptosis and T-cell depletion during feline infectious peritonitis. J Virol 70, 8977-8983.
Haijema, B.J., Volders, H., Rottier, P.J., 2003, Switching species tropism: an effective way to manipulate the feline coronavirus genome. J Virol 77, 4528-4538.
Hartmann, K., 2005, Feline infectious peritonitis. Vete Clin North Am Small Anim Pract 35, 39-79.
Hartmann, K., Binder, C., Hirschberger, J., Cole, D., Reinacher, M., Schroo, S., Frost, J., Egberink, H., Lutz, H., Hermanns, W., 2003, Comparison of different tests to diagnose feline infectious peritonitis. J Vet Intern Med 17, 781-790.
Herrewegh, A.A., de Groot, R.J., Cepica, A., Egberink, H.F., Horzinek, M.C., Rottier, P.J., 1995a, Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin microbiol 33, 684-689.
Herrewegh, A.A., Smeenk, I., Horzinek, M.C., Rottier, P.J., de Groot, R.J., 1998, Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72, 4508-4514.
Herrewegh, A.A.P.M., Mahler, M., Hedrich, H.J., Haagmans, B.L., Egberink, H.F., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J., 1997, Persistence and Evolution of Feline Coronavirus in a Closed Cat-Breeding Colony. Virology 234, 349-363.
Herrewegh, A.A.P.M., Vennema, H., Horzinek, M.C., Rottier, P.J.M., de Groot, R.J., 1995b, The Molecular Genetics of Feline Coronaviruses: Comparative Sequence Analysis of the ORF7a/7b Transcription Unit of Different Biotypes. Virology 212, 622-631.
Ho, T.Y., Wu, S.L., Chen, J.C., Li, C.C., Hsiang, C.Y., 2007, Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 74, 92-101.
Hohdatsu, T., Izumiya, Y., Yokoyama, Y., Kida, K., Koyama, H., 1998, Differences in virus receptor for type I and type II feline infectious peritonitis virus. Arch Virol 143, 839-850.
Hohdatsu, T., Nakamura, M., Ishizuka, Y., Yamada, H., Koyama, H., 1991a, A study on the mechanism of antibody-dependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Arch Virol 120, 207-217.
Hohdatsu, T., Okada, S., Ishizuka, Y., Yamada, H., Koyama, H., 1992, The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci 54, 557-562.
Hohdatsu, T., Okada, S., Koyama, H., 1991b, Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch Virol 117, 85-95.
Hohdatsu, T., Sasamoto, T., Okada, S., Koyama, H., 1991c, Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683. Vet Microbiol 28, 13-24.
Holzworth, J., 1963, Some important disorders of cats. Cornell Vet, 157-160.
Hon, C.C., Lam, T.Y., Shi, Z.L., Drummond, A.J., Yip, C.W., Zeng, F., Lam, P.Y., Leung, F.C., 2008, Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J Virol 82, 1819-1826.
Hsieh, M.W., Chueh, L.L., Su, B.L., 2008, Shedding of feline coronavirus in the cats living in the same household with feline infectious peritonitis cats. Taiwan Vet J 34, 170-176.
Ishida, T., Shibanai, A., Tanaka, S., Uchida, K., Mochizuki, M., 2004, Use of recombinant feline interferon and glucocorticoid in the treatment of feline infectious peritonitis. J Feline Med Surg 6, 107-109.
Jacobse-Geels, H.E., Horzinek, M.C., 1983, Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells. J Gen Virol 64, 1859-1866.
Jakob, H., 1914, Therapeutsiche, kasuisitische und statistische Mitteilungen aus der Klinik fu‥ r kleine Haustiere an der Reichstierarzneischule in Utrecht (Holland), Jahrgang 1912/13. Z Tiermed Microbiol Immunol 18, 193.
Jia, W., Karaca, K., Parrish, C.R., Naqi, S.A., 1995, A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains. Arch Virol 140, 259-271.
Kaldor, S.W., Kalish, V.J., Davies, J.F., 2nd, Shetty, B.V., Fritz, J.E., Appelt, K., Burgess, J.A., Campanale, K.M., Chirgadze, N.Y., Clawson, D.K., Dressman, B.A., Hatch, S.D., Khalil, D.A., Kosa, M.B., Lubbehusen, P.P., Muesing, M.A., Patick, A.K., Reich, S.H., Su, K.S., Tatlock, J.H., 1997, Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 40, 3979-3985.
Keck, J.G., Matsushima, G.K., Makino, S., Fleming, J.O., Vannier, D.M., Stohlman, S.A., Lai, M.M., 1988, In vivo RNA-RNA recombination of coronavirus in mouse brain. J Virol 62, 1810-1813.
Keck, J.G., Stohlman, S.A., Soe, L.H., Makino, S., Lai, M.M., 1987, Multiple recombination sites at the 5''-end of murine coronavirus RNA. Virology 156, 331-341.
Kennedy, M., Boedeker, N., Gibbs, P., Kania, S., 2001, Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. Vet Microbiol 81, 227-234.
Kennedy, M.A., Brenneman, K., Millsaps, R.K., Black, J., Potgieter, L.N., 1998, Correlation of genomic detection of feline coronavirus with various diagnostic assays for feline infectious peritonitis. J Vet Diagn Invest 10, 93-97.
Keyaerts, E., Vijgen, L., Pannecouque, C., Van Damme, E., Peumans, W., Egberink, H., Balzarini, J., Van Ranst, M., 2007, Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 75, 179-187.
Kipar, A., Baptiste, K., Barth, A., Reinacher, M., 2006a, Natural FCoV infection: cats with FIP exhibit significantly higher viral loads than healthy infected cats. J Feline Med Surg 8, 69-72.
Kipar, A., Kohler, K., Leukert, W., Reinacher, M., 2001, A comparison of lymphatic tissues from cats with spontaneous feline infectious peritonitis (FIP), cats with FIP virus infection but no FIP, and cats with no infection. J Comp Pathol 125, 182-191.
Kipar, A., May, H., Menger, S., Weber, M., Leukert, W., Reinacher, M., 2005, Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis. Vet Pathol 42, 321-330.
Kipar, A., Meli, M.L., Failing, K., Euler, T., Gomes-Keller, M.A., Schwartz, D., Lutz, H., Reinacher, M., 2006b, Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection. Vet immunol Immunopathol 112, 141-155.
Kiss, I., Kecskemeti, S., Tanyi, J., Klingeborn, B., Belak, S., 2000, Prevalence and genetic pattern of feline coronaviruses in urban cat populations. Vet J 159, 64-70.
Klumperman, J., Locker, J.K., Meijer, A., Horzinek, M.C., Geuze, H.J., Rottier, P.J., 1994, Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J Virol 68, 6523-6534.
Koljesar, G., Yoo, D., 2001, Targeted RNA recombination of the membrane and nucleocapsid protein genes between mouse hepatitis virus and bovine coronavirus. J Vet Sci 2, 149-157.
Kummrow, M., Meli, M.L., Haessig, M., Goenczi, E., Poland, A., Pedersen, N.C., Hofmann-Lehmann, R., Lutz, H., 2005, Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland. Clin Diagn Lab Immunol 12, 1209-1215.
Kusters, J.G., Jager, E.J., Lenstra, J.A., Koch, G., Posthumus, W.P., Meloen, R.H., van der Zeijst, B.A., 1989, Analysis of an immunodominant region of infectious bronchitis virus. J Immunol 143, 2692-2698.
Lai, M.M.C., Perlman, S., Anderson, L.J., 2007, Coronaviridae, In: Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Martin, M.A., Roizman, B., Straus, S.E.E. (Eds.) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, PA, pp. 1305-1335.
Li, H.P., Huang, P., Park, S., Lai, M.M., 1999, Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription. J Virol 73, 772-777.
Li, H.P., Zhang, X., Duncan, R., Comai, L., Lai, M.M., 1997, Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc Natl Acad Sci USA 94, 9544-9549.
Liang, C.T., Chueh, L.L., Pang, V.F., Zhuo, Y.X., Liang, S.C., Yu, C.K., Chiang, H., Lee, C.C., Liu, C.H., 2007, A non-biotin polymerized horseradish-peroxidase method for the immunohistochemical diagnosis of canine distemper. J Comp Pathol 136, 57-64.
Liao, C.L., Lai, M.M., 1992, RNA recombination in a coronavirus: recombination between viral genomic RNA and transfected RNA fragments. J Virol 66, 6117-6124.
Lin, C.N., Su, B.L., Wang, C.H., Hsieh, M.W., Chueh, T.J., Chueh, L.L., 2009, Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: A 5-year study in Taiwan. Vet Microbiol 136, 233-239.
Liu, S., Zhang, Q., Chen, J., Han, Z., Shao, Y., Kong, X., Tong, G., 2008, Identification of the avian infectious bronchitis coronaviruses with mutations in gene 3. Gene 412, 12-25.
Lole, K.S., Bollinger, R.C., Paranjape, R.S., Gadkari, D., Kulkarni, S.S., Novak, N.G., Ingersoll, R., Sheppard, H.W., Ray, S.C., 1999, Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152-160.
McKeirnan, A.J., Evermann, J.F., Davis, E.V., Ott, R.L., 1987, Comparative properties of feline coronaviruses in vitro. Can J Vet Res 51, 212-216.
McKeirnan, A.J., Evermann, J.F., Hargis, A., Miller, L.M., Ott, R.L., 1981, Isolation of feline coronavirus from two cats with diverse disease manifestation. Feline Pract 11, 16-20.
Meli, M., Kipar, A., Muller, C., Jenal, K., Gonczi, E., Borel, N., Gunn-Moore, D., Chalmers, S., Lin, F., Reinacher, M., Lutz, H., 2004, High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats. J Feline Med Surg 6, 69-81.
Mochizuki, M., Mitsutake, Y., Miyanohara, Y., Higashihara, T., Shimizu, T., Hohdatsu, T., 1997, Antigenic and plaque variations of serotype II feline infectious peritonitis coronaviruses. J Vet Med Sci 59, 253-258.
Montali, R.J., Strandberg, J.D., 1972, Extraperitoneal lesions in feline infectious peritonitis. Vet Pathol 9, 109-121.
Ng, M.L., Tan, S.H., See, E.E., Ooi, E.E., Ling, A.E., 2003, Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol 84, 3291-3303.
Nishimura, Y., Goto, Y., Pang, H., Endo, Y., Mizuno, T., Momoi, Y., Watari, T., Tsujimoto, H., Hasegawa, A., 1998, Genetic heterogeneity of env gene of feline immunodeficiency virus obtained from multiple districts in Japan. Virus Res 57, 101-112.
O''Reilly, K.J., Fishman, B., Hitchcock, L.M., 1979, Feline infectious peritonitis: isolation of a coronavirus. Vet Rec 104, 348.
Olsen, C.W., Corapi, W.V., Ngichabe, C.K., Baines, J.D., Scott, F.W., 1992, Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. J Virol 66, 956-965.
Pedersen, N.C., 1976a, Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am J Vet Res 37, 567-572.
Pedersen, N.C., 1976b, Serologic studies of naturally occurring feline infectious peritonitis. Am J Vet Res 37, 1449-1453.
Pedersen, N.C., 1987, Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol 218, 529-550.
Pedersen, N.C., 1995, An overview of feline enteric coronavirus and feline infectious peritonitis virus infection. Feline Pract 23, 7-22.
Pedersen, N.C., 2009, A review of feline infectious peritonitis virus infection: 1963-2008. J Feline Med Surg 11, 225-258.
Pedersen, N.C., Allen, C.E., Lyons, L.A., 2008, Pathogenesis of feline enteric coronavirus infection. J Feline Med Surg 10, 529-541.
Pedersen, N.C., Black, J.W., Boyle, J.F., Evermann, J.F., McKeirnan, A.J., Ott, R.L., 1984, Pathogenic differences between various feline coronavirus isolates. Adv Exp Med Biol 173, 365-380.
Pedersen, N.C., Boyle, J.F., Floyd, K., Fudge, A., Barker, J., 1981, An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. Am J Vet Res 42, 368-377.
Pratelli, A., Martella, V., Decaro, N., Tinelli, A., Camero, M., Cirone, F., Elia, G., Cavalli, A., Corrente, M., Greco, G., Buonavoglia, D., Gentile, M., Tempesta, M., Buonavoglia, C., 2003, Genetic diversity of a canine coronavirus detected in pups with diarrhoea in Italy. J Virol Methods 110, 9-17.
Pyrc, K., Dijkman, R., Deng, L., Jebbink, M.F., Ross, H.A., Berkhout, B., van der Hoek, L., 2006, Mosaic structure of human coronavirus NL63, one thousand years of evolution. J Mol Biol 364, 964-973.
Reed, L.J., Muench, H.A., 1938, A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493-497.
Reubel, G.H., Ramos, R.A., Hickman, M.A., Rimstad, E., Hoffmann, D.E., Pedersen, N.C., 1993, Detection of Active and Latent Feline Herpesvirus-1 Infections Using the Polymerase Chain-Reaction. Arch Virol 132, 409-420.
Rottier, P.J., Nakamura, K., Schellen, P., Volders, H., Haijema, B.J., 2005, Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol 79, 14122-14130.
Sawicki, S.G., Sawicki, D.L., 2005, Coronavirus transcription: a perspective. Curr Top Microbiol Immunol 287, 31-55.
Scott, F.W., 1987, Immunization against feline coronaviruses. Adv Exp Med Biol 218, 569-576.
Shi, S.T., Lai, M.M., 2005, Viral and cellular proteins involved in coronavirus replication. Curr Top Microbiol Immunol 287, 95-131.
Shiba, N., Maeda, K., Kato, H., Mochizuki, M., Iwata, H., 2007, Differentiation of feline coronavirus type I and II infections by virus neutralization test. Vet Microbiol 124, 348-352.
Simons, F.A., Vennema, H., Rofina, J.E., Pol, J.M., Horzinek, M.C., Rottier, P.J., Egberink, H.F., 2005, A mRNA PCR for the diagnosis of feline infectious peritonitis. J Virol Methods 124, 111-116.
Sparkes, A.H., Gruffydd-Jones, T., Harbour, D.A., 1991, Feline infectous peritonitis: a review of clinicopathological changes in 65 cases, and a critical assessment of their diagnostic value. Vet Rec 129, 209-212.
Sparkes, A.H., Gruffydd-Jones, T.J., Harbour, D.A., 1992, Feline coronavirus antibodies in UK cats. Vet Rec 131, 223-224.
Stavrinides, J., Guttman, D.S., 2004, Mosaic evolution of the severe acute respiratory syndrome coronavirus. J Virol 78, 76-82.
Stiles, J., Bienzle, D., Render, J.A., Buyukmihci, N.C., Johnson, E.C., 1999, Use of nested polymerase chain reaction (PCR) for detection of retroviruses from formalin-fixed, paraffin-embedded uveal melanomas in cats. Vet Ophthalmol 2, 113-116.
Stiles, J., McDermott, M., Willis, M., Roberts, W., Greene, C., 1997, Comparison of nested polymerase chain reaction, virus isolation, and fluorescent antibody testing for identifying feline herpesvirus in cats with conjunctivitis. Am J Vet Res 58, 804-807.
Stoddart, C.A., Barlough, J.E., Baldwin, C.A., Scott, F.W., 1988a, Attempted immunisation of cats against feline infectious peritonitis using canine coronavirus. Res Vet Sci 45, 383-388.
Stoddart, C.A., Scott, F.W., 1989, Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J Virol 63, 436-440.
Stoddart, M.E., Gaskell, R.M., Harbour, D.A., Gaskell, C.J., 1988b, Virus shedding and immune responses in cats inoculated with cell culture-adapted feline infectious peritonitis virus. Vet Microbiol 16, 145-158.
Takano, T., Hohdatsu, T., Hashida, Y., Kaneko, Y., Tanabe, M., Koyama, H., 2007a, A "possible" involvement of TNF-alpha in apoptosis induction in peripheral blood lymphocytes of cats with feline infectious peritonitis. Vet Microbiol 119, 121-131.
Takano, T., Hohdatsu, T., Toda, A., Tanabe, M., Koyama, H., 2007b, TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages. Virology 364, 64-72.
Tresnan, D.B., Levis, R., Holmes, K.V., 1996, Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70, 8669-8674.
van der Meer, F.J., de Haan, C.A., Schuurman, N.M., Haijema, B.J., Peumans, W.J., Van Damme, E.J., Delputte, P.L., Balzarini, J., Egberink, H.F., 2007a, Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Res 76, 21-29.
van der Meer, F.J., de Haan, C.A., Schuurman, N.M., Haijema, B.J., Verheije, M.H., Bosch, B.J., Balzarini, J., Egberink, H.F., 2007b, The carbohydrate-binding plant lectins and the non-peptidic antibiotic pradimicin A target the glycans of the coronavirus envelope glycoproteins. J Antimicrob Chemother 60, 741-749.
van der Most, R.G., Heijnen, L., Spaan, W.J., de Groot, R.J., 1992, Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs. Nucleic Acids Res 20, 3375-3381.
Vennema, H., 1999, Genetic drift and genetic shift during feline coronavirus evolution. Vet Microbiol 69, 139-141.
Vennema, H., de Groot, R.J., Harbour, D.A., Dalderup, M., Gruffydd-Jones, T., Horzinek, M.C., Spaan, W.J., 1990a, Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol 64, 1407-1409.
Vennema, H., de Groot, R.J., Harbour, D.A., Dalderup, M., Gruffydd-Jones, T., Horzinek, M.C., Spaan, W.J., 1990b, Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens. Adv Exp Med Biol 276, 217-222.
Vennema, H., Heijnen, L., Rottier, P.J., Horzinek, M.C., Spaan, W.J., 1992a, A novel glycoprotein of feline infectious peritonitis coronavirus contains a KDEL-like endoplasmic reticulum retention signal. J Virol 66, 4951-4956.
Vennema, H., Poland, A., Foley, J., Pedersen, N.C., 1998, Feline infectious peritonitis viruses arise by mutation from endmic feline enteric coronaviruses. Virology 243, 150-157.
Vennema, H., Rossen, J.W., Wesseling, J., Horzinek, M.C., Rottier, P.J., 1992b, Genomic organization and expression of the 3'' end of the canine and feline enteric coronaviruses. Virology 191, 134-140.
Vijaykrishna, D., Smith, G.J., Zhang, J.X., Peiris, J.S., Chen, H., Guan, Y., 2007, Evolutionary insights into the ecology of coronaviruses. J Virol 81, 4012-4020.
Wang, L., Junker, D., Collisson, E.W., 1993, Evidence of natural recombination within the S1 gene of infectious bronchitis virus. Virology 192, 710-716.
Ward, J., 1970, Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology 41, 191-194.
Weiss, R.C., Cox, N.R., Martinez, M.L., 1993, Evaluation of free or liposome-encapsulated ribavirin for antiviral therapy of experimentally induced feline infectious peritonitis. Res Vet Sci 55, 162-172.
Weiss, R.C., Oostrom-Ram, T., 1989, Inhibitory effects of ribavirin alone or combined with human alpha interferon on feline infectious peritonitis virus replication in vitro. Vet Microbiol 20, 255-265.
Wolfe, L.G., Grieseme, R.A., 1966, Feline infetious peritonitis. Pathol Vet 3, 255-270.
Woo, P.C., Lau, S.K., Yip, C.C., Huang, Y., Tsoi, H.W., Chan, K.H., Yuen, K.Y., 2006, Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. J Virol 80, 7136-7145.
Woo, P.C., Wang, M., Lau, S.K., Xu, H., Poon, R.W., Guo, R., Wong, B.H., Gao, K., Tsoi, H.W., Huang, Y., Li, K.S., Lam, C.S., Chan, K.H., Zheng, B.J., Yuen, K.Y., 2007, Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol 81, 1574-1585.
Yamaguchi, N., MacDonald, D.W., Passanisi, W.C., Harbour, D.A., Hopper, C.D., 1996, Parasite prevalence in free-ranging farm cats, Felis silvestris catus. Epidemiol Infect 116, 217-223.
Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., Rabenau, H., Doerr, H.W., Hunsmann, G., Otaka, A., Tamamura, H., Fujii, N., 2004, HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem Biophys Res Commun 318, 719-725.
Yount, B., Roberts, R.S., Lindesmith, L., Baric, R.S., 2006, Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: engineering a recombination-resistant genome. Proc Natl Acad Sci USA 103, 12546-12551.
Zhang, X.W., Yap, Y.L., 2004, Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg Med Chem 12, 2517-2521.
Zook, B.C., King, N.W., Robinson, R.L., McCombs, H.L., 1968, Ultrastructural evidence for the viral etiology of feline infectious peritonitis. Pathol Vet 5, 91-95.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top