跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊馥瑋
研究生(外文):Fu-Wei Yang
論文名稱:c-Maf在調控小鼠IL-21基因所扮演的角色
論文名稱(外文):Regulation of murine IL-21 gene by c-Maf
指導教授:繆希椿
指導教授(外文):Shi-Chuen Miaw
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:免疫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:54
中文關鍵詞:小鼠
外文關鍵詞:c-MafIL-21Th17
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
c-Maf是一個b-Zip家族的轉錄因子,根據之前的文獻報導,c-Maf在Th2細胞中對IL-4基因調控是一個必要的存在。而最近的文獻則是報導 c-Maf與 IL-21在Th17細胞中的關係。這篇文獻發現在c-Maf KO小鼠中,IL-21的基因表現是有缺陷的,也就是說,c-Maf很有可能是調控IL-21基因表現的一個上游分子。由於c-Maf本身是一個轉錄分子,因此我們假設c-Maf會調控IL-21基因表現。為了確定c-Maf調控IL-21基因是經由直接接觸IL-21 gene locus或是透過與其它不明轉錄蛋白作用再影響到IL-21基因表現,我們利用電腦軟體在IL-21 promoter的基因序列中找尋MARE。我們在-1.3kb中總共找到兩個half MARE和兩個V-MARE。為了確定c-Maf會藉由哪一個MARE影響IL-21的表現,我們建構了具有點突變或是截短的promoter片段的pGL3質體,再利用這些質體進行Luciferase assay。我們的研究結果指出c-Maf最有與位在-192 ~ -205 kb的V-MARE作用,進而影響IL-21基因表現。除了以上的實驗,我們也去測試SUMOylation會不會讓c-Maf對IL-21基因表現造成影響。在這方面,我們的結論是:c-Maf的轉錄能力在調控IL-21基因系統中,不受到SUMOylation的影響。
c-Maf is a b-Zip transcription factor, which was found to be an essential role in regulating IL-4 expression in Th2 cells. Recent study has investigated the relationship between c-Maf and IL-21 gene expression in Th17 cells. Their study uncovered shortage of IL-21 production in c-Maf KO mice, which implied that c-Maf might be an upstream molecule of IL-21. Since c-Maf itself is a transcription factor, we hypothesized that c-Maf should regulate IL-21 gene expression. To identify whether c-Maf regulates IL-21 expression by directly or indirectly binding on IL-21 promoter, we went to investigate MARE sequence on IL-21 promoter. We found two half MARE and two V-MARE in -1.3kb upstream region. We constructed several point mutatated and truncated promoter fragments onto pGL3 Basic vector, and performed luciferase assay. Our results pointed out that the putative c-Maf binding site should be V-MARE locating -192 ~ -205kb. On the other hand, the SUMOylation effect of c-Maf on IL-21 gene expression was tested. We concluded that c-Maf transactivation ability on IL-21 gene expression was not affected by SUMOylation.
Ackowledgement…………………………………...………………….i
Abstract..………………………………………………….....................ii
摘要………………………………………………………………….. iii
Chapter I Bckground.………….…………………….................. 1
1.1 The characteristic cytokine expression of T helper cells….……... 1
1.2 Th2 cells differentiation……………………..…….…………. 2
1.3 Th17 cells differentiation…………………...………………... 3
1.4 An overview of c-Maf and its function…………………. 4
1.5 Post-translation modification of c-Maf…………………….…… 6
1.6 IL-21……………………………………………………….… 7
2. Rationale…………………………………………………….…… 8
3. Hypothesis……………………………………….... 9
Chapter II Methods……………………...………… 10
2.1 Cell Culture…………………………………………………… 10
2.2 Plasmids……………………………………………………………. 10
2.3 Transfection………………………………………………………....13
2.4 Luciferase assay………………………………….………………….13
2.5 Western Blot………………………………………………………...13
2.6 Statistics……………………………………………………………..14
Chapter III Experimental Materials................................ 15
3.1 Cell line……………………………………………………………..15
3.2 Antibodies.…………………………………………………………..15
3.3 Enzymes…………………………………………………………….15
3.4 Kits………………………………………………………………….16
3.5 Chemicals and reagents……………………………………………..16

Chapter IV Results..…………………….….…………………….19
4.1 c-Maf induce murine IL-21 gene expression………………………..19
4.2 Putative c-Maf binding sites may locate on -250bp
promoter region…………………………………….……………….20
4.3 The binding site of wt c-Maf is at V-MARE site locating
-192 ~ -205………………………………………………………….21
4.4 Sumoylation of c-Maf has no significant impact on
mIL-21 expression..………………………….……………………...22
Chapter V Discussion…...……………………………..…………24
Reference………………………………………..………………….....28
Chapter VI Experimental Figures…...…..…………… 32
Fig.1 The map of pGL3-Basic mIL-21 promoter constructs… 33
Fig.2 c-Maf is able to transactivate mIL-21 expression…................. 34
Fig.3 Two promoter deletion constructs designation……………………35
Fig.4 Slightly decreased transactivity of wt c-Maf on two
deletion mutants…………………………………………………..36
Fig.5 Three MARE mutants'' designation………………………. 37
Fig.6 Slightly decreased transactivity of wt c-Maf on two
MARE mutants..…...…………………………………….……….38
Fig.7 Parallel tendency of two wt c-Maf dosages on
four mutants………………………………………….…………….39
Fig.8 wt c-Maf failed to induce pGL3 mIL-21 promtoer
O200 expression…………..…………………………...…………..40
Fig.9 DeSumoylated environment lead to upregulated transactivity of
wt c-Maf on mIL-21 expression……………………..………..….43
Fig.10 wt c-Maf isn’t related to Sumoylation in mIL-21
expression system……………………………………………….44

Chapter VII Supplementary Data…………………………………..45
sFig.1 Slightly decreased transactivity of wt c-Maf on two
deletion mutants…………………………………………………..46
sFig.2 Slightly decreased transactivity of wt c-Maf on two
MARE mutants…………………………………………… 48
sFig.3 Parallel tendency of two wt c-Maf dosages on
four mutants………………………………………………………50
sFig.4 wt c-Maf failed to induce pGL3 mIL-21 promtoer
O200 expression………………………………………………….53
Bauquet, A.T., Jin, H., Paterson, A.M., Mitsdoerffer, M., Ho, I.C., Sharpe, A.H., and Kuchroo, V.K. (2009). The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 10, 167-175.
Benkhelifa, S., Provot, S., Nabais, E., Eychene, A., Calothy, G., and Felder-Schmittbuhl, M.P. (2001). Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol Cell Biol 21, 4441-4452.
Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., and Kuchroo, V.K. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238.
Bush, K.A., Farmer, K.M., Walker, J.S., and Kirkham, B.W. (2002). Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheum 46, 802-805.
Cao, S., Liu, J., Song, L., and Ma, X. (2005). The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J Immunol 174, 3484-3492.
Chen, Z., Laurence, A., Kanno, Y., Pacher-Zavisin, M., Zhu, B.M., Tato, C., Yoshimura, A., Hennighausen, L., and O''Shea, J.J. (2006). Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A 103, 8137-8142.
Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, L., To, W., Kwan, S., Churakova, T., et al. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744-748.
Desterro, J.M., Thomson, J., and Hay, R.T. (1997). Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417, 297-300.
Ho, I.C., Hodge, M.R., Rooney, J.W., and Glimcher, L.H. (1996). The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973-983.
Homma, Y., Cao, S., Shi, X., and Ma, X. (2007). The Th2 transcription factor c-Maf inhibits IL-12p35 gene expression in activated macrophages by targeting NF-kappaB nuclear translocation. J Interferon Cytokine Res 27, 799-808.
Johnson, E.S., and Blobel, G. (1997). Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272, 26799-26802.
Kahyo, T., Nishida, T., and Yasuda, H. (2001). Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8, 713-718.
Kasaian, M.T., Whitters, M.J., Carter, L.L., Lowe, L.D., Jussif, J.M., Deng, B., Johnson, K.A., Witek, J.S., Senices, M., Konz, R.F., et al. (2002). IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 16, 559-569.
Kataoka, K., Noda, M., and Nishizawa, M. (1994). Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol 14, 700-712.
Kerppola, T.K., and Curran, T. (1994). A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149-3158.
Kim, J.I., Ho, I.C., Grusby, M.J., and Glimcher, L.H. (1999). The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745-751.
Kishikawa, H., Sun, J., Choi, A., Miaw, S.C., and Ho, I.C. (2001). The cell type-specific expression of the murine IL-13 gene is regulated by GATA-3. J Immunol 167, 4414-4420.
Langrish, C.L., Chen, Y., Blumenschein, W.M., Mattson, J., Basham, B., Sedgwick, J.D., McClanahan, T., Kastelein, R.A., and Cua, D.J. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201, 233-240.
Leavenworth, J.W., Ma, X., Mo, Y.Y., and Pauza, M.E. (2009). SUMO Conjugation Contributes to Immune Deviation in Nonobese Diabetic Mice by Suppressing c-Maf Transactivation of IL-4. J Immunol.
Lee, H.J., Takemoto, N., Kurata, H., Kamogawa, Y., Miyatake, S., O''Garra, A., and Arai, N. (2000). GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192, 105-115.
Mangan, P.R., Harrington, L.E., O''Quinn, D.B., Helms, W.S., Bullard, D.C., Elson, C.O., Hatton, R.D., Wahl, S.M., Schoeb, T.R., and Weaver, C.T. (2006). Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231-234.
Martin, S., Wilkinson, K.A., Nishimune, A., and Henley, J.M. (2007). Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8, 948-959.
Murphy, C.A., Langrish, C.L., Chen, Y., Blumenschein, W., McClanahan, T., Kastelein, R.A., Sedgwick, J.D., and Cua, D.J. (2003). Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198, 1951-1957.
Nakae, S., Nambu, A., Sudo, K., and Iwakura, Y. (2003). Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171, 6173-6177.
Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K.T., and Kawai, S. (1989). v-maf, a viral oncogene that encodes a "leucine zipper" motif. Proc Natl Acad Sci U S A 86, 7711-7715.
Nurieva, R., Yang, X.O., Martinez, G., Zhang, Y., Panopoulos, A.D., Ma, L., Schluns, K., Tian, Q., Watowich, S.S., Jetten, A.M., et al. (2007). Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480-483.
Ochi, H., Ogino, H., Kageyama, Y., and Yasuda, K. (2003). The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation. J Biol Chem 278, 537-544.
Ouyang, W., Lohning, M., Gao, Z., Assenmacher, M., Ranganath, S., Radbruch, A., and Murphy, K.M. (2000). Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27-37.
Pai, S.Y., Truitt, M.L., and Ho, I.C. (2004). GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci U S A 101, 1993-1998.
Pot, C., Jin, H., Awasthi, A., Liu, S.M., Lai, C.Y., Madan, R., Sharpe, A.H., Karp, C.L., Miaw, S.C., Ho, I.C., et al. (2009). Cutting Edge: IL-27 Induces the Transcription Factor c-Maf, Cytokine IL-21, and the Costimulatory Receptor ICOS that Coordinately Act Together to Promote Differentiation of IL-10-Producing Tr1 Cells. J Immunol.
Schmidt, D., and Muller, S. (2002). Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A 99, 2872-2877.
Spolski, R., and Leonard, W.J. (2008). Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26, 57-79.
Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., and Stockinger, B. (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179-189.
Xu, J., Yang, Y., Qiu, G., Lal, G., Wu, Z., Levy, D.E., Ochando, J.C., Bromberg, J.S., and Ding, Y. (2009). c-Maf regulates IL-10 expression during Th17 polarization. J Immunol 182, 6226-6236.
Yamashita, M., Ukai-Tadenuma, M., Miyamoto, T., Sugaya, K., Hosokawa, H., Hasegawa, A., Kimura, M., Taniguchi, M., DeGregori, J., and Nakayama, T. (2004). Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem 279, 26983-26990.
Yang, X.O., Panopoulos, A.D., Nurieva, R., Chang, S.H., Wang, D., Watowich, S.S., and Dong, C. (2007). STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282, 9358-9363.
Yoshida, T., Ohkumo, T., Ishibashi, S., and Yasuda, K. (2005). The 5''-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf. Nucleic Acids Res 33, 3465-3478.
Zhang, D.H., Yang, L., and Ray, A. (1998). Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J Immunol 161, 3817-3821.
Zheng, W., and Flavell, R.A. (1997). The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587-596.
Zhou, L., Chong, M.M., and Littman, D.R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646-655.
Zhou, L., Ivanov, II, Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E., Leonard, W.J., and Littman, D.R. (2007). IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8, 967-974.
Zhu, J., Min, B., Hu-Li, J., Watson, C.J., Grinberg, A., Wang, Q., Killeen, N., Urban, J.F., Jr., Guo, L., and Paul, W.E. (2004). Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol 5, 1157-1165.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top