跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:亞聖
研究生(外文):Vladimir Borisovich Yashin
論文名稱:音樂旋律自動產生演算法之研究
論文名稱(外文):An Automatic Melody Generation Algorithm
指導教授:鄭士康
指導教授(外文):Shyh-Kang Jeng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊網路與多媒體研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:52
中文關鍵詞:作曲演算法
外文關鍵詞:auditory roughnessconsonancealgorithmic compositiontonal center
相關次數:
  • 被引用被引用:1
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種單音調性音樂式之作曲演算法。此演算法將西洋音樂中協和音與調性中心的理論以基因演算法的函數實現至一個人性化且有邏輯的使用者介面上;並且,演算法所產生的旋律亦經由新一代的統計方法所測試。無論對於專業作曲者的靈感找尋或是一般大眾的娛樂效果,本系統所產生的有趣結果都有一定程度的實用性。此外,實驗結果和總結也對音樂學和聲學有所貢獻。本論文顯示出音高在旋律「悅耳性」的角色,也提供線索給該領域日後的研究。
This thesis presents a compositional algorithm for short monophonic tonal melody. It uses music theory knowledge of consonance and tonal center implemented in fitness function for genetic algorithm. The system was implemented in a user friendly intuitive graphic user interface. The generated melodies are tested by the novel statistical method. The system gives interesting results, which can be used by professional composer for
musical composition inspiration or by average user for fun and entertainment. The test results and summary can be also useful for musicology and auditory roughness. This thesis shows the role of pitch in melody “pleasantness” and gives many hints for future studies.
CONTENTS ................................................................................................................ 2
LIST OF FIGURES .................................................................................................... 2
LIST OF TABLES ...................................................................................................... 2
1.1 MOTIVATION.............................................................................................. 3
1.2 BRIEF LITERATURE SURVEY AND RELATED RESEARCHES......... 4
1.3 CONTRIBUTIONS ....................................................................................... 5
1.4 ORGANIZATION OF THESIS.................................................................... 5
Chapter 2 BACKGROUND AND PRELIMINARY KNOWLEDGE ...................... 6
2.1 MATLAB MIDI TOOLBOX ........................................................................ 6
2.2 MELODY, TONAL CENTER AND TONAL MUSIC ................................ 8
2.3 CONSONANCE AND DISSONANCE....................................................... 11
Chapter 3 ALGORITHM DESIGN ......................................................................... 16
3.1 SYSTEM STRUCTURE ............................................................................. 16
3.2 GENETIC ALGORITHM .......................................................................... 18
3.3 FITNESS FUNCTIONS .............................................................................. 21
3.3.1 MEAN-VARIANCE FITNESS FUNCTION................................... 21
3.3.2 SCORING FITNESS FUNCTION................................................... 24
3.3.3 HALF TONE FITNESS FUNCTION .............................................. 28
3.4 DATA........................................................................................................... 31
3.4.1 TRAINING DATA............................................................................ 31
3.4.2.TESTING DATA .............................................................................. 33
3.5 TEST RESULTS.......................................................................................... 34
3.5.1 TESTING DATA RESULTS............................................................ 34
3.5.2 SUBJECT TEST RESULTS............................................................. 36
3.6 USER INTERFACE.................................................................................... 39
Chapter 4 CONCLUSIONS...................................................................................... 42
REFERENCES ......................................................................................................... 43
APPENDIX A Training Data ................................................................................ 45
APPENDIX B List of Midi Songs in Testing Data................................................ 47
APPENDIX C Test Results .................................................................................... 49
APPENDIX D GUI Documentation ...................................................................... 50
[1] Robert R., Machine Musicanship, The MIT Press, Cambridge, Massachusetts, 2001
[2] Pozzati G., Gen: A Lisp Music Environment, Computer Music Journal, Vol. 24, No.
3 (Autumn, 2000), pp. 42-47
[3] Manzolli J., Interactive, Evolutionary Textured Sound Composition. Proceedings of
the sixth Eurographics workshop on Multimedia 2001, Manchester, UK pp: 153 –
164, 2002
[4] Yu C., Computer Generated Music (URL:
http://brainop.media.mit.edu/online/net-music/net-instrument/Thesis.html )
[5] http://www.mmk.e-technik.tu-muenchen.de/persons/ter/top/roughness.html
[6] Helmholtz, H. Die Lehre von den Tonempfindungen als physiologische Grundlage
für die Theorie der Musik. Vieweg, Braunschweig,1863
[7] Kim, Y., Theories of musical hearing: 1863-1931: Helmholtz, Stumpf, Riemann and
Kurth in Historical Context, Columbia University, 2003
[8] Yonatan I. F., Igor O. V., Noh M.D., Garell P.C., Bakken H., Joseph C.A., Howard
A.M., Steinschneider M. Consonance and Dissonance of Musical Chords: Neural
Correlates in Auditory Cortex of Monkeys and Humans (URL:
http://jn.physiology.org/cgi/content/abstract/86/6/2761 )
[9] Schellenberg E.G., Trehub E.S., Frequency ratios and the perception of tone patterns,
Psychonomic Bulletin & Review, 1994, 1 (2), 191-201
44
[10] Ochinsky, V.V. Octave cycle and golden proportion (URL:
science.ncstu.ru/nii/cycles/otc/2001/ )
[11] Burns, E. M. "Intervals, Scales, and Tuning." In The Psychology of Music, second
edition, edited by Diana Deutsch, 215–64. New York: Academic Press, 1998.
[12] http://www.jyu.fi/musica/miditoolbox/
[13] http://rosemck1.tripod.com/jukebox-classical.html
[14] http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox/
[15] Hochreiter R., Audible convergence for optimal base melody extension with
statistical genre-specific interval distance evaluation, Springer Berlin, Dec.1, 2005
(URL: http://homepage.univie.ac.at/ronald.hochreiter/pub/preprint/h-audconv-full.pdf )
[16] http://www.mididb.com/
[17] Krumhansl, C. L. Cognitive Foundations of Musical Pitch. New York: Oxford
University Press, (1990).
[18] Toiviainen, P., Krumhansl, C. L. Measuring and modeling real-time responses to
music: the dynamics of tonality induction. Perception 32, 6 (2003), 741-766.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top