跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/05 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昕彥
研究生(外文):Hsin-Yen Lin
論文名稱:密度泛函理論於甲醇裂解、甲醇蒸氣重組及水氣轉移反應在釕-鉑(111)表面之研究
論文名稱(外文):Density Functional Theory Study of Methanol Decomposition, Methanol Steam Reforming and Water-Gas Shift Reactions on Ru-Pt(111) Surface
指導教授:江志強江志強引用關係
指導教授(外文):Jyh-Chiang Jiang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:146
中文關鍵詞:密度泛函理論甲醇裂解甲醇蒸氣重組反應水氣轉移反應釕-鉑(111)觸媒
外文關鍵詞:DFTmethanol decompositionmethanol steam reformingwater-gas shift reactionRu-Pt(111)catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本文利用密度泛函理論(DFT)探討在釕-鉑(111)表面上的甲醇裂解、甲醇蒸氣重組和水氣轉移反應。由計算結果中可知甲醇最穩定的吸附位置為在釕原子上,而裂解反應經由O–H鍵裂解開始,接著連續三個C–H鍵裂解,最後形成一氧化碳是比較容易發生的路徑,其中速率決定步驟為甲醇中O–H鍵裂解,反應能障為0.73 eV,但是此能障與甲醛基(HCO)的脫氫反應能障相當地接近。此外,共吸附水的存在對於甲醇的裂解反應有明顯地影響,它降低了甲醇中O–H鍵裂解反應所需的能障,卻增加了其他中間產物中C–H鍵裂解反應所需的能障。當一氧化碳於表面生成時,可以藉水氣轉移反應將其氧化。根據我們的計算結果,在釕-鉑(111)表面上的一氧化碳可能透過表面上氧原子進行氧化(redox mechanism),也有可能先形成羧基(COOH)為中間產物(carboxyl mechanism),最後皆形成二氧化碳。此兩種反應路徑的速率決定步驟皆為由水在釕上生成羥基(OH),而最可能的反應路徑為從水雙體中所產生羥基,其反應能障為0.55 eV。
First principle periodic DFT calculations have been used to study the thermodynamic and kinetic characterization of methanol decomposition, methanol steam reforming reaction (SRM), and water-gas shift (WGS) reaction on Ru-Pt(111) surface. Our calculated results indicate that the favorable adsorption site for methanol decomposition is on Ru top site. Methanol decomposition prefers to begin with O–H bond scission rather than C–H bond scission. The rate-determining step (RDS) for this reaction pathway is the cleavage of O–H bond in methanol with barrier of 0.73 eV, but it is very close to the barrier for abstraction of H from formyl (HCO), 0.70 eV. Moreover, the presence of co-adsorbed water has a significant influence on methanol decomposition, which reduces the O–H bond breaking activation barrier of methanol but enlarges the C–H bond breaking activation barrier of methoxy intermediates. The formed CO on surface can be oxidized via WGS reaction. According to our results, two mechanisms of WGS reaction on Ru-Pt(111) surface, redox and carboxyl mechanisms, can happen. However, redox mechanism is limited by the coverage of OH groups on Pt sites. The RDS for both two mechanisms of WGS reaction are formation of OH groups on Ru top site, which a reaction barrier of 0.55 eV is calculated in water dimer activation.
ABSTRACT I
ACKNOWLEDGEMENTS III
CONTENTS IV
INDOX OF FIGURE VI
INDOX OF TABLE X
CHAPTER 1. INTRODUCTION 1
1.1 Fuel Cells 1
1.1.1 Development and Applications 1
1.1.2 The Direct Methanol Fuel Cells (DMFCs) 4
1.1.3 The Hydrogen Generation via Methanol 6
1.1.4 Water-Gas Shift Reaction 8
1.1.5 Bimetallic Catalysts Applications 11
1.2 This Research 14
CHAPTER 2. METHODOLOGY 16
2.1 Theoretical Background 16
2.1.1 Quantum Chemistry 16
2.1.2 Density Functional Theory 16
2.1.3 Periodic Systems 19
2.1.4 Brillouin Zone Sampling 22
2.1.5 Plane Wave Basis Set 25
2.1.6 Pseudopotential 28
2.1.7 Ultrasoft-pseudopotential 32
2.1.8 Projected Augmented Wave (PAW) 34
2.1.8 Generalized Gradient Approximation (GGA) 36
2.1.9 Nudged Elastic Band Method (NEB) 37
2.1.10 Linear Synchronous Transit (LST) 39
2.1.11 Synchronous Transit Methods 40
2.2 Computational Details 42
2.2.1 Method 42
2.2.2 Surface Model 44
a. Bulk 44
b. Pt(111) Surface 44
c. Pt(111) Surface Alloyed Atomic Ru 46
CHAPTER 3. RESULTS AND DISCUSSION 48
3.1 Methanol Dehydrogenation on Ru-Pt(111) Surface 48
3.1.1 Adsorption Properties of Reaction Intermediates 48
a. Adsorption of Hydrogen Atom 51
b. Adsorptions of Methanol Intermediates 52
3.1.2 Reaction Mechanism of Methanol dehydrogenation 61
a. Behavior of H Atom on Ru-Pt(111) Surface 63
b. Methanol Decomposition on Pt’ top Site 64
c. Methanol Decomposition via O−H Bond Scission on Ru top Site 67
d. Methanol Decomposition via C−H Bond Scission on Ru top Site 70
e. Summary 75
3.2 Methanol Steam Reforming Reaction 78
3.2.1 Co-adsorption Properties of Reaction Intermediates 78
a. Adsorption of H2O 79
b. Co-adsorption of CH3OH and H2O 80
c. Co-adsorption of Other Intermediates and H2O/OH 83
3.2.2 Reaction Mechanisms of Methanol Steam Reforming Reaction 89
a. Methanol Steam Reforming Reaction of H2ORu + CH3OHPt’ 89
b. Methanol Steam Reforming Reaction of CH3OHRu + H2OPt’ 95
c. Summary 103
3.3 Water-Gas Shift Reaction 108
3.3.1 Adsorption Properties of Water-Gas Shift Reaction Intermediates 108
a. Adsorptions of WGS Reaction Intermediates 108
b. Adsorptions of Water Dimer 114
3.3.2 Reaction Mechanisms of Water-Gas Shift Reaction 116
a. Water Activation 117
b. Redox Mechanism 121
c. Carboxyl Mechanism 126
d. Hydrogen Recombination 132
e. Summary 133
CHAPTER 4. CONCLUSION 137
REFERENCE 141
1.Grove, W. R. Phil. Mag. Ser. 1839, 314, 127.
2.Liebhafsky, H. A.; Cairns, E. J. Fuel Cells and Fuel Batteries; John Wiley &Sons: New York.1968.
3.Appleby, A. J. J. Power Sources 1990, 29, 3.
4.Bacon, F. T. Electrochim. Acta 1969, 14, 569.
5.Larminie, J; Dicks, A. Fuel Cell Systems Explained 2nd ed.; Wiley Inc.: England. 2003
6.Perry, M. L.; Fuller, T. f. J. Electrochem. Soc. 2002, 7, 149.
7.Steele, B. C. H.; Heonzel, A. Nature 2001, 414, 345.
8.Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm R. J. J. Electrochem. Soc. 1998, 145, 925.
9.Kua, J.; Goddard, W. A. J. Am. Chem. Soc. 1999, 121, 10928.
10.Williams, K. R.; Burstein, T. Catal. Today 1997, 38, 401.
11.Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R. Catal. Today 1997, 38, 425.
12.Hamnett, A. Catal. Today 1997, 38, 445.
13.Vaidya, P. D.; Rodrigues, A. E. Chem. Eng.J. 2006, 117, 39
14.Semelsberger, T. A.; Borup, R. L.; J. Power Sour. 2006, 155, 340.
15.Turco, M.; Bagnasco, G.; Costantino, U.; Marmottini, F.; Montanari, T.; Ramis, G.; Busca, G. J. Catal. 2004, 228, 56.
16.Agrell, J.; Birgersson, H.; Boutonnet, M.; Melián-Cabrera, I.; Navarro, R. M.; Fierro, J. L. G. J. Catal, 2003, 219, 389.
17.Wang, S.; Wang, S. J. Power Sour. 2008, 185, 451.
18.Agrell, J.; Lindström, B.; Pettersson, L.J.; Jaras, S.G. Hydrogen generation from methanol; In Catalysis, Spivey, J. J., Eds.; Cambridge, 2002, V16.
19.de Wild, P. J.; Verhaak, M. J. F. M. Catal. Today 2000, 60, 3.
20.Geissler, K.; Newson, E.; Vogel, F.; Truong, T. B; Hottinger, P.; Wokaun, A. Phys. Chem. Chem. Phys. 2001, 3, 289.
21.Shen, J.-P.; Song, C. Catal. Today 2002, 77, 89.
22.Liu, S.; Takahashi, K.; Ayabe, M. Catal. Today 2003, 87, 247.
23.Jenkins, J. W.; Shutt, E. Platinum Metals Rev. 1989, 33, 118.
24.Lindström, B.; Pettersson, L.J.; Menon, P.G. Appl. Catal. A 2002, 234, 111.
25.Satterfield, C. N. Heterogeneous Catalysis in Industrial Practice, 2nd ed.; McGraw-Hill: New York, 1991.
26.Campbell, C. T.; Ernst, K. H. Surface science of catalysis: In situ probes and reaction kinetics; Dwyer, D. J., Hoffmann, F. M., Eds.; ACS Symposium Series 482; American Chemical Society: Washington, DC, 1992; pp. 130.
27.Ovesen, C. V.; Stoltze, P.; Nørskov, J. K.; Campbell, C. T. J. Catal. 1992, 134, 445.
28.Capek, P.; Klusacek, K. Catal. Today 1994, 20, 367.
29.Koryabkina, N. A.; Phatak, A. A.; Ruettinger, W. F.; Farruto, R. J.; Rebeiro, F. H. J. Catal.2003, 217, 233.
30.Phatak, A. A.; Koryabkina, N.; Rai, S.; Ratts, J. L.; Ruettinger, W.; Farrauto, R. J.; Blau, G. E.; Delgass, W. N.; Ribeiro, F. H. Catal. Today 2007, 123, 224.
31.Grabow, L. C.; Gokhale, A. A.; Evans, S. T.; Dumesic, J. A.; Mavrikakis, M. J. Phys. Chem. C 2008, 112, 4608.
32.Gokhale, A. A.; Dumesic, J. A.; Manos Mavrikakis, M. J. Am. Chem. Soc.2008, 130, 1402.
33.Wang, G.; Jiang, L.; Cai, Z.; Pan, Y.; Zhao, X.; Huang, W.; Xie, K.; Li, Y.; Sun, Y.; Zhong, B. J. Phys. Chem. B 2003, 107, 557.
34.Shubina, T. E.; Koper, M. T. M. J. Electroanal. Chem. 2006, 8, 703.
35.Ovesen, C. V.; Clausen, B. S.; Hammershoi, B. S.; Steffensen, G.; Askgaard, T.; Chorkendorff, I.; Norskov, J. T.; Rasmussen, P. B.; Stoltze, P.; Taylor, P. J. Catal. 1996, 158, 170.
36.Tserpe, E.; Waugh, K. C. A microkinetic analysis of the reverse water-gas shift reaction. In Dynamics of Surfaces and Reaction Kinetics in Heterogeneous Catalysis; G. F. Froment, K. C. W., Ed.; Elsevier: Amsterdam, 1997; pp. 401.
37.Callaghan, C. A, A Dissertation, Worcester Polytechnic Institute, Department of Chemical Engineering, 2006
38.Campbell, C. T.; Daube, K. A. J. Catal. 1987, 104, 109.
39.Hinrichsen, O.; Genger, T.; Muhler, M. Stud. Surf. Sci. Catal. 2000, 130, 3825.
40.Nakamura, J.; Campbell, J. M.; Campbell, C. T. J. Chem. Soc. Faraday Trans. 1990, 86, 2725.
41.Mhadeshwar, A. B.; Vlachos, D. G. Catal. Today 2005, 105, 162.
42.Mhadeshwar, A. B.; Vlachos, D. G. J. Phys. Chem. B 2005, 109, 16819.
43.Binder, H.; Kbhling, A.; Sandstede, G. In From Electrocatalysis to Fuel Cells, Sandstede, G., Ed.; University of Washington Press: Seattle, 1972; p. 43
44.McNicol, B. D.; Short, R. T. J. Electroanal. Chem. 1977, 81, 249.
45.Davies, J. C.; Hayden, B. E.; Pegg, D. J.; Rendall, M. E. Surf. Sci. 2002, 496, 110.
46.Rodriguez-Nieto, F. J.; Morante-Catacora, T. Y.; Cabrera, C. R. J. Electroanal. Chem. 2004, 571, 15.
47.Watanabe, M.; Motoo, S. J. Electroanal. Chem. 1975, 60, 275.
48.Ticanelli, E.; Beery, J. G.; Paffett, M. T.; Gottesfeld, S. J. Electroanal. Chem. 1989, 258, 61.
49.Tremiliosi-Filho, G.; Kim, H.; Chrzanowski, W.; Wieckowski, A.; Grzybowska, B.; Kulesza, P. J. Electroanal. Chem. 1999, 467, 143.
50.Lin, W.F.; Iwasita T.; Vielstich W. J. Phys. Chem. B 1999, 103, 3250.
51.Davies, J. C.; Hayden, B. E.; Pegg, D. J. Surf. Sci. 2000, 467, 118.
52.Lu, C.; Masel. R. I. J. Phys. Chem. B, 2001, 105, 9793.
53.Goodenough, J. B.; Hamnett, A.; Kennedy, B. J.; Manoharan, R.; Weeks, S. A. J. Electroanal. Chem. 1988, 240, 133.
54.Krausa, M.; Vielstich, W. J. Electroanal. Chem. 1994, 379, 307.
55.Swanson, H. E.; Tatge, E. National Bureau of Standards Circular 539, 1953; Vol. 1, pp. 31.
56.Sun, S. -G.; Chen, A. -C.; Huang, T. -S. Li, J. -B.; Tian. Z. -W. J. Electroanol. Chem. 1992, 340, 213.
57.Gasteiger, H. A.; Marković, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1993, 97, 12020.
58.Gasteiger, H. A.; Marković, N.; Ross, P. N.; Cairns, E. J. J. Electrochem. Soc. 1994, 141, 1795.
59.Marković, N. M.; Gasteiger, H. A.; Ross, P. N.; Jiang, X.; Villegas, I.; Weaver, M. J., Electrochim. Acta 1995, 40, 91.
60.Iwasita, T.; Hoster, H.; John-Anacker, A.; Lin, W. F.; Vielstich, W. Langmuir 2000, 16, 522.
61.Chrzanowski, W.; Wieckowski, A. Langmuir, 1998, 14, 1967.
62.Herrero-Rodriguez, E.; Feliu, J. M.; Wieckowski, A. Langmuir, 1999, 15, 4944.
63.Chu, D.; Gilman, S. J. Electrochem. Soc. 1996, 143, 1685.
64.Iúdice de Souza, J. P.; Iwasita, T.; Nart, F. C.; Vielstich, W. J. Appl. Electrochem. 2000, 30, 43.
65.Hoster, H.; Iwasita,T.; Baumgartner, H.; Vielstich, W. Phys. Chem. Chem. Phys. 2001, 3, 337.
66.Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910.
67.Lu, G. Q.; Chrzanowski, W.; Wieckowski, A. J. Phys. Chem. B 2000, 104, 5566.
68.Franaszczuk, K.; Herrero, E.; Zelenay, P.; Wieckowski, A.; Wang, J.; Masel,R. I. J. Phys. Chem. 1992, 96, 8509.
69.Levine, Ira N. Quantum chemistry 5th ed.; Prentice-Hall Inc.: New Jersey, 1991; Ch. 15.
70.Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864.
71.Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133.
72.Villullas, H. M.; Mattos-Costa, F. I.; Bulhoes, L. O. S. J. Phys. Chem. B 2004, 108, 12898
73.Brillouin, L. Wave Propagation in Periodic Structures; Dover: New York, 1946
74.Lebowitz, J. L.; Lieb., E. H. Phys. Rev. Lett. 1969, 22, 631.
75.Bouckaert, L. P.; Smoluchowski, R.; Wigner, L. P. Phys. Rev. 1969, 50, 58.
76.Chadi, D. J. Phys. Rev. B 1977, 16, 1746.
77.Evarestov, R. A.; Smirnov, V. P. Phys. Stat. Sol. 1983, 119, 9.
78.Froyen, S. Phys. Rev. B 1989, 39, 3168.
79.Robertson, I. J.; Payne, M. C. J. Phys.: Condens. Matter 1990, 2, 9837.
80.Robertson, I. J.; Payne, M. C. J. Phys.: Condens. Matter 1991, 3, 8841.
81.Denteneer, P. J. H.; van Haeringer, W. J. Phys. Cond. Matt. 1985, 18, 4127.
82.Chadi, D. L.; Cohen, M. L. Phys. Rev. B 1973, 8, 5747.
83.Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993.
84.Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
85.Hamann, D. R.; Schlüter, M.; Chiang, C. Phys. Rev. Lett. 1979, 43, 1494.
86.Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Phys. Rev. B 1982, 26, 4199.
87.Kerker, G. J. Phys. C 1980, 13, 189.
88.Vanderbilt, D. Phys. Rev. B 1985, 32, 8412.
89.Troullier, N.; Martins, J. L. Solid State Comm. 1990, 74, 613.
90.Goedecker, S. ; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703.
91.Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. Rev. B 1998, 58, 3641.
92.Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Phys. Rev. B 1990, 41, 1227.
93.Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.
94.Laasonen, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Phys. Rev. B 1993, 47,10142.
95.Burke, P. K.; Ernzerhof , M. Phys. Rev. Lett. 1996, 77, 18.
96.Blöchl, P. E. Phys. ReV. B 1994, 50, 17953.
97.Blöchl, P. E. J. Phys. Chem. 1995, 99, 7422.
98.Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
99.Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
100.Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. Phys. Rev. B 1992, 46, 6671.
101.Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transition, In Classical and Quantum Dynamics in Condensed Phase Simulations, Berne, B. J.; Ciccotti, G.; Coker, D. F., Eds.; World Scientific, 1998.
102.Mills, G.; Jónsson, H. Phys. Rev. Lett. 1994, 72, 1124.
103.Mills, G.; Jónsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
104.White, K. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
105.Branger, V.; Pelosin, V.; Badawi, K. F.; Goudeau, P. Thin Solid Films 1996, 275, 22.
106.Structure data of Elements and Intermetallic phases, Springer, Berlin, 1977, Vol IIIb
107.Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
108.Payne, M.C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. Rev. Mod. Phys. 1992, 64, 1045.
109.Milman, V.; Winkler, B.;White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmatskaya, E. V.; Nobes, R. H. Int. J. Quantum Chem. 2000, 77, 895.
110.Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm J. Comput. Mater. Sci. 2003, 28, 250
111.Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
112.Kresse, G.; Hafner, J. Phys. Rev. B 1993, 48, 13115.
113.Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
114.Kresse, G.; Furthmu‥ller, J. Comput. Mater. Sci. 1996, 6, 15.
115.Kresse, G.; Furthmu‥ller, J. Phys. Rev. B 1996, 54, 11169.
116.Wyckoff, R. W. G. Crystal Structures, 2nd ed.; Wiley: New York, 1963; Vol. 1.
117.Foiles, S. M.; Baskes, M. I.; Daw, M. S. Phys. Rev. B 1986, 33, 7983.
118.Tasi, S. R. Thesis of Master, National Taiwan University of Science and Technology, Department of Chemical Engineering, 2008.
119.Ehlers, D. H.; Spitzer, A.; Luth, H. Surf. Sci. 1985, 160, 57.
120.Kizhakevariam, N. ; Stuve, E. M. Surf. Sci. 1993, 286, 246.
121.Desai, S. K.; Neurock, M.; Kourtakis, K. J. Phys. Chem. B 2002, 106, 2559.
122.Ishikawa, Y.; Diaz-Morales, R. R.; Perez, A.; Vilkas, M. J.; Cabrera, C. R. Chem. Phys. Lett. 2005, 411, 404.
123.Hartnig, C.; Spohr, E. Chem. Phys. 2005, 319, 185.
124.Han, B. C.; Ceder, G. Phys. Rev. B 2006, 74, 205418.
125.Gokhale, A. A.; Kandoi, S.; Greeley, J. P.; Mavrikakis, M.; Dumesic, J. A. Chem. Eng. Sci. 2004, 59, 4679.
126.Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2002, 124, 7193.
127.Waszczuk, P.; Lu, G. Q.; Wieckowski, A.; Lub, C.; Rice, C.; Masel, R. I., Electrochim. Acta 2002, 47, 3637.
128.Wang, J.; Masel, R. J. Am. Chem. Soc. 1991, 113, 5850.
129.Sexton, B. A. Surf. Sci. 1981, 102, 271.
130.Kabbabi, A.; Faure, R.; Durand, R.; Beden, B,; Hahn, F.; Leger, J. M.; Lamy, C., J. Elec. Chem. 1998, 444, 41.
131.Korzeniewski, C.; Childers, C. L. J. Phys. Chem. B 1998, 102, 489.
132.Shibata, M.; Motoo, S. J. Electroanal. Chem. 1986, 209, 151.
133.Trimm, D.; Onsan, Z. Catal. Rev. 2001, 43, 39.
134.Palo, D. R.; Dagle, R. A; Holladay, J. D. Chem. Rev. 2007, 107, 3992.
135.Davies, J.C.; Hayden, B.E.; Pegg, D.J.; Rendall, M.E. Surf. Sci. 2002, 110, 496.
136.Faraday Discussions 2002, 121, 349–364.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊