跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉穎蓁
研究生(外文):Ying-chen LIU
論文名稱:離子熔液與二元酸混合物之固液相平衡研究
論文名稱(外文):Solid-Liquid Equilibrium for Mixtures Containing Ionic Liquids and Dibasic Acids
指導教授:李明哲李明哲引用關係林河木
指導教授(外文):Ming-Jer LeeHo-Mu Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:離子熔液二元酸固液相平衡
外文關鍵詞:Solid-Liquid EquilibriaIonic Liquids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在於探討回收廢流物中之二元酸,採用固體消失法來量測己二酸、戊二酸及琥珀酸分別與[SEt3][NTf2]、[Smee][NTf2][C3mpip][NTf2]、[C3mpyr][NTf2]、[Bmpy][NTf2]、及[Emim][NTf2]所組成之雙成份混合物的固液相平衡數據。實驗結果顯示,這些含二元酸之混合物並無複合物的產生,均屬簡單共熔系統,且所配製的樣品得到之結晶多為二元酸。雙成份系統的固液相平衡數據,以NRTL模式關聯,並訂定最適化之模式參數值;計算結果顯示NRTL模式可準確描述各雙成份系統的固液相平衡。
The objective of this study is to recover diacids from waste stream. The solid-liquid equilibrium (SLE) data were measured with solid- disappearance method for various binary mixtures containing diacids, [SEt3][NTf2],[Smee][NTf2],[C3mpip][NTf2],[C3mpyr][NTf2],[C3mpyr]
[NTf2],[Bmpy][NTf2],[Emim][NTf2]. The results showed that there were no complex formations in any of the mixtures and thus these mixtures behaved as simple eutectic systems.The crystal formations from all the prepared samples are diacids.The binary SLE data were correlated with the NRTL model and the optimal values of the model parameters were determined.The calculated results showed that the NRTL model was capable of representing the SLE behavior of those binary systems.
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖表索引 Ⅵ
第一章 緒論 1
1-1前言 1
1-2常溫離子熔液之特性與應用 1
1-3研究動機與目的 7
1-4本文各章重點 9
第二章 固液相平衡量測 11
2-1儀器設備 11
2-2藥品 12
2-3 實驗設備配置說明 13
2-4 熔點量測步驟 14
2-4-1 雙成份樣品配製 15
2-4-2 長晶技術之探討 15
2-4-3 熔點之量測 17
2-5 熔化熱之量測 18
2-6雙成分系統之固液相平衡量測結果 20
第三章 固液相平衡理論計算 49
3-1 固液相平衡法則 49
3-2 雙成份系統之固液相平衡計算 50
第四章 結論與建議 76
4-1 結論 76
4-2 建議 76
參考文獻 78
符號說明 83

圖表索引
表2-1 實驗相關物質之基本性質 22
表2-2 藥品之分子式與結構 23
表2-3 [C3mpip][NTf2] (1) + 己二酸 (2)之固液相平衡數據 25
表2-4 [C3mpyr][NTf2] (1) + 己二酸 (2)之固液相平衡數據 26
表2-5 [Bmpy][NTf2] (1) + 己二酸 (2)之固液相平衡數據 27
表2-6 [SEt3][NTf2] (1) + 戊二酸 (2)之固液相平衡數據 28
表2-7 [Smee][NTf2] (1) + 戊二酸 (2)之固液相平衡數據 29
表2-8 [C3mpip][NTf2] (1) + 戊二酸 (2)之固液相平衡數據 30
表2-9 [C3mpyr][NTf2] (1) + 戊二酸 (2)之固液相平衡數據 31
表2-10 [C3mpip][NTf2] (1) + 琥珀酸 (2)之固液相平衡數據 32
表2-11 [C3mpyr][NTf2] (1) + 琥珀酸 (2)之固液相平衡數據 33
表2-12 [Bmpy][NTf2] (1) + 琥珀酸 (2)之固液相平衡數據 34
表2-13 [Emim][NTf2] (1) + 琥珀酸 (2)之固液相平衡數據 35
表2-14 各雙成份系統之Ott and Goates多項式係數與關
聯結果 36
表3-1 [C3mpip][NTf2] (1) + 己二酸 (2)雙成份系統固液
相平衡關聯結果 52
表3-2 [C3mpyr][NTf2] (1) + 己二酸 (2)雙成份系統固液
相平衡關聯結果 53
表3-3 [Bmpy][NTf2] (1) + 己二酸 (2)雙成份系統固液
相平衡關聯結果 54
表3-4 [SEt3][NTf2] (1) + 戊二酸 (2)雙成份系統固液
相平衡關聯結果 55
表3-5 [Smee][NTf2] (1) + 戊二酸 (2)雙成份系統固液
相平衡關聯結果 56
表3-6 [C3mpip][NTf2] + 戊二酸 (2)雙成份系統固液
相平衡關聯結果 57
表3-7 [C3mpyr][NTf2] (1) + 戊二酸 (2)雙成份系統固液
相平衡關聯結果 58
表3-8 [C3mpip][NTf2] (1) + 琥珀酸 (2)雙成份系統固液
相平衡關聯結果 59
表3-9 [C3mpyr][NTf2] (1) + 琥珀酸 (2)雙成份系統固液
相平衡關聯結果 60
表3-10 [Bmpy][NTf2] (1) + 琥珀酸 (2)雙成份系統固液
相平衡關聯結果 61

表3-11 [Emim][NTf2] (1) + 琥珀酸 (2)雙成份系統固液
相平衡關聯結果 62
表3-12 NRTL模式固液相平衡關聯結果 63

圖1-1 離子熔液之常見陰、陽離子 10
圖2-1 [C3mpip][NTf2] (1) + 己二酸 (2)之固液相邊界圖 38
圖2-2 [C3mpyr][NTf2] (1) + 己二酸 (2)之固液相邊界圖 39
圖2-3 [Bmpy][NTf2] (1) + 己二酸 (2)之固液相邊界圖 40
圖2-4 [SEt3][NTf2] (1) + 戊二酸 (2)之固液相邊界圖 41
圖2-5 [Smee][NTf2] (1) + 戊二酸 (2)之固液相邊界圖 42
圖2-6 [C3mpip][NTf2] (1) + 戊二酸 (2)之固液相邊界圖 43
圖2-7 [C3mpyr][NTf2] (1) + 戊二酸 (2)之固液相邊界圖 44
圖2-8 [C3mpip][NTf2] (1) + 琥珀酸 (2)之固液相邊界圖 45
圖2-9 [C3mpyr][NTf2] (1) + 琥珀酸 (2)之固液相邊界圖 46
圖2-10 [Bmpy][NTf2] (1) + 琥珀酸 (2)之固液相邊界圖 47
圖2-11 [Emim][NTf2] (1) + 琥珀酸 (2)之固液相邊界圖 48
圖3-1 [C3mpip][NTf2] (1) + 己二酸 (2)之固液相邊界圖 65
圖3-2 [C3mpyr][NTf2] (1) + 己二酸 (2)之固液相邊界圖 66
圖3-3 [Bmpy][NTf2] (1) + 己二酸 (2)之固液相邊界圖 67
圖3-4 [SEt3][NTf2] (1) + 戊二酸 (2)之固液相邊界圖 68
圖3-5 [Smee][NTf2] (1) + 戊二酸 (2)之固液相邊界圖 69
圖3-6 [C3mpip][NTf2] (1) + 戊二酸 (2)之固液相邊界圖 70
圖3-7 [C3mpyr][NTf2] (1) + 戊二酸 (2)之固液相邊界圖 71
圖3-8 [C3mpip][NTf2] (1) + 琥珀酸 (2)之固液相邊界圖 72
圖3-9 [C3mpyr][NTf2] (1) + 琥珀酸 (2)之固液相邊界圖 73
圖3-10 [Bmpy][NTf2] (1) + 琥珀酸 (2)之固液相邊界圖 74
圖3-11 [Emim][NTf2] (1) + 琥珀酸 (2)之固液相邊界圖 75
參考文獻

Anthony, J. L., E. J. Maginn, and J. F. Brennecke, “Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Water,” J. Phys. Chem. B, Vol. 105, pp. 10942-10949 (2001).

Anthony, J. L., E. J. Maginn, and J. F. Brennecke, “Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3- Methylimidazolium Hexafluorophosphate,” J. Phys. Chem. B, Vol. 106, pp. 7315-7320 (2002).

Blanchard, L. A. and J. F. Brennecke, “Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide,” Ind. Eng. Chem. Res., Vol. 40, pp. 287-292 (2001).

Blanchard, L. A., Z. Gu, and J. F. Brennecke, “Hight-Pressure Phase Behavior of Ionic Liquid/CO2 Systems,” J. Phys. Chem. B, Vol. 105, pp. 2437-2444 (2001).

Blanchard, L. A., D. Hancu, E. J. Beckman, and J. F. Brennecke, “Green Processing Using Ionic Liquids and CO2,” Nature, Vol. 399, pp. 28-29 (1999).

Chauvin, Y., L. Mussmann, and H. Olivier, “A Novel Class of Versatile Solvents for Two-Phase Catalysis: Hydrogenation, Isomerization, and Hydroformylation

of Alkenes Catalyzed by Rhodium Complexes in Liquid 1,3-Dialkylimidazolium Salts,” Angew. Chem. Int. Ed. Engl., Vol. 34, pp. 2698-2700 (1995).

Deng, Y. and K. Qiao, “A Novel Reaction in Ionic Liquids: Selective Cyclization of 1-Dodecene to Cyclododecane under Moderate Pressure,” Tetrahedron Letters, Vol. 44, pp. 2191-2193 (2003).

Domañska, U., A. Marciniak, and M. Krolikowski, “Phase Equilibria and Modeling of Ammonium Ionic Liquid, C2NTf2, Solutions, ” J. Phys. Chem. B,Vol. 112, pp. 1218-1225 (2008).

Domañska, U., M. Krolikowski, and K. Paduszyñski, “Phase Equilibria Study of the Binary Systems (N-Butyl-3-methylpyridinium Tosylate Ionic Liquid + an Alcohol),” J. Chem. Thermodyn., Vol. 41, pp. 932–938 (2009).

Dullius, J. E. L., P. A. Z. Suarez, S. Einloft, R. F. de Souza, and J. Dupont, “Selective Catalytic Hydrodimerization of 1,3-Butadiene by Palladium Compounds Dissolved in Ionic Liquids,” Organometallics, Vol. 17, pp. 815-819 (1998).

Fuller, J., R. T. Carlin, and R. A. Osteryoung, “The Room-Temperature Ionic Liquid 1-Ethyl-3- Methylimidazolium Tetrafluoroborate: Electrochemical Couples and Physical Properties,” J. Electrochem. Soc., Vol. 144, pp. 3881-3886 (1997).


Holbrey, J. D., A. S. Larsen, F. S. Tham, and C. A. Reed, “Designing
Ionic Liquid: Imidazolium Melts with Inert Carborane Anion,” J. Am. Chem. Soc., Vol. 122, pp. 7264-7272 (2000).

Huddleston, J. G., H. D. Willauer, R. P. Swatloski, A. E. Visser, and R. D. Rogers, “Room-Temperature Ionic Liquids as Novel Media for “Clean” Liquid-Liquid Extraction,” Chem. Commum., Vol. 16, pp. 1765-1766 (1998).

Ionic Liquids Database (http://ilthermo.boulder.nist.gov/ILThermo/main-
menu.uix)

Lee, M. J. and P. C. Chi, “Solid-Liquid Equilibrium for Mixtures Containing Cresols, Piperazine, and Dibutyl Ether,” J. Chem. Eng. Data, Vol. 43, pp. 292-295 (1993).

Marsh, K. N., C. T. Wu , A. V. Deev, and J. A. Boxall, “Liquid-Liquid Equilibria of Room-Temperature Ionic Liquids and Butan-1-ol,” J. Chem. Eng. Data, Vol. 48, pp. 486-491 (2003).

McKinley, M. D., M. S. Selvan, R. H. Dubois, and J. L. Atwood, “Liquid-Liquid Equilibria for Toluene + Heptane + 1-Ethyl-3- Methylimidazolium Triiodide and Toluene + Heptane + 1-Butyl-3- Methylimidazolium Triiodide,” J. Chem. Eng. Data, Vol. 45, pp. 841-845 (2000).

National Institute of Standards and Technology (NIST) Chemistry WebBook (http://webbook.nist.gov/chemistry/ )

Ott, J. B. and J. R. Goates, “Phase Equilibria in Binary Mixtures Containing Benzene, a Cyclohexane, an n-Alkane, or Tetrachlorome-
thane,” J. Chem. Thermodyn., Vol. 15, pp. 267-278 (1983).

Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed.; Prentice-Hall Inc., Englewood Cliffs, N. J. (1986).

Renon, H. and J. M. Prausnitz, “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures,” AIChE J., Vol. 14, pp. 135-144 (1968).

Scurto, A. M., S. N. V. K. Aki, and J. F. Brennecke, “Carbon Dioxide Induced Separation of Ionic Liquids and Water,” Chem. Commun., Vol. 9, pp. 572-573 (2003).


Seddon, K. R., “Room-Temperature Ionic Liquids: Neoteric Solvents for
Clean Catalysis,” Kinet. Catal., Vol. 37, pp. 693-697 (1996).

Seddon, K. R., A. Stark, and M. J. Torres, “Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids,” Pure
Appl. Chem., Vol. 72, pp. 2275-2287 (2000).

Suarez, P. A. Z., J. E. L. Dullius, S. Einoft, R. F. de Souza, and J. Dupont, “The Use of New Ionic Liquids in Tow-Phase Catalytic Hydrogenation Reaction by Rhodium Complexes,” Polyhedron, Vol. 15, pp. 1217-1219 (1996).

Swatloski, R. P., A. E. Visser, W. M. Reichert., G. A. Broker, L. M. Farina, J. D. Holbrey, and R. D. Rogers, “On the Solubilization of Water with Ethanol in Hydrophobic Hexafluorophosphate Ionic Liquids,” Green Chemistry, Vol. 4, pp. 81-87 (2002).

Waliszewski, D., I.Stepniak, H.Piekarski, and A.Lewandowski, “Heat Capacities of Ionic Liquids and Their Heats of Solution in Molecular Liquids,” Thermochim. Acta, Vol. 433 , pp. 149-152 (2005).

Wei, G. T., Z. Yang, and C. J. Chen, “Room Temperature Ionic Liquids as a Novel Medium for Liquid/Liquid Extraction of Metal Ions,” Analytica Chimica Acta, Vol. 488, pp. 183-192 (2003).

Wong, D. S. H., J. P. Chen, J. M. Chang, and C. H. Chou, “Phase Equilibria of Water and Ionic Liquids [Emim][PF6] and [Bmim][PF6],” Fluid Phase Equilib., Vol. 194-197, pp. 1089-1095 (2002).

陳永富, 混合醇胺MEA/MDEA水溶液比熱量測及二氧化碳與混合醇胺水溶液之水溶液焓測量研究, 碩士論文, 中原大學化工所, 中壢 (1993)。

洪櫻姿, 含離子熔液混合物的固液相平衡研究, 碩士論文, 臺灣科技大學化工研究所, 台北 (2003)。

田心怡, 含二元酸、水與離子熔液混合物的固液相平衡研究, 碩士論文, 臺灣科技大學化工研究所, 台北 (2004)。

周玉娜, 間-甲基苯甲酸、鄰-甲基苯甲酸與特丁醇混合物的固液相平衡研究, 碩士論文, 臺灣科技大學化工研究所, 台北 (2008)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top