|
[1] The biocreative challenge evaluation. http://biocreative.sourceforge.net/index.html. [2] E. Alpaydin. Introduction to machine learning. Cambridge: MIT Press, 2004. [3] A. Benveniste, P. Priouret, and M. Metivier. Adaptive algorithms and stochastic approximations. 1990. [4] A. Berger. The improved iterative scaling algorithm: A gentle introduction. Technical report, Carnegie Mellon University, 1997. [5] A.L. Berger, V.J. Della Pietra, and S.A. Della Pietra. A maximum entropy approach to natural language processing. Computational linguistics, 22(1):39–71, 1996. [6] A. Culotta, D. Kulp, and A. McCallum. Gene prediction with conditional random fields. Technical report, University of Massachusetts Dept. of Computer Science, 2005. [7] C. Fraley. On computing the largest fraction of missing information for the EM algorithm and the worst linear function for data augmentation. Computational Statistics and Data Analysis, 31(1):13–26, 1999. [8] L. Hirschman, M. Krallinger, and A. Valencia. The second biocreative challenge evaluation workshop, 2007. CINO Centro Nacional de Investigaciones Oncologicas. [9] L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia. Overview of biocreative: critical assessment of information extraction for biology. BMC Bioinformatics, 6(1):S1, 2005. [10] C.N. Hsu, Y.M. Chang, C.J. Kuo, Y.S Lin, H.S. Huang, and I.F. Chung. Integrating high dimensional bi-directional parsing models for gene mention tagging. Bioinfor-matics, 24(13):i286, 2008. [11] H.S. Huang, Y.M. Chang, and C.N. Hsu. Training conditional random fields by periodic step size adaptation for large-scale text mining. In Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, pages 511–516, 2007. [12] L.J. Jensen, J. Saric, and P. Bork. Literature mining for the biologist: from information retrieval to biological discovery. Nature Reviews Genetics, 7(2):119–129, 2006. [13] A. Krogh. An introduction to hidden markov models for biological sequences. NEW COMPREHENSIVE BIOCHEMISTRY, 32:45–63, 1998. [14] Taku Kudo. Crf++: Yet another crf toolkit. available under lgpl from the following. http://crfpp.sourceforge.net/,January 2003. [15] C.J. Kuo. Using conditional random fields for gene mention tagging. Master’s thesis, National Yang-Ming University School of Life Science Institute of Bioinformatics, 2007. [16] C.J. Kuo, Y.M. Chang, H.S. Huang, K.T. Lin, B.H. Yang, Y.S. Lin, C.N. Hsu, and I.F. Chung. Rich feature set, unification of bidirectional parsing and dictionary filtering for high F-score gene mention tagging. In Proceedings of the Second BioCreative Challenge Evaluation Workshop, pages 105–107, 2007. [17] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. pages 282–289, 2001. [18] U. Leser and J. Hakenberg. What makes a gene name? named entity recognition in the biomedical literature. Briefings in Bioinformatics, 6(4):357–369, 2005. [19] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. In Proceedings of the Seventeenth International Conference on Machine Learning, pages 591–598, 2000. [20] R. McDonald and F. Pereira. Identifying gene and protein mentions in text using conditional random fields. BMC bioinformatics, 6(1):S6, 2005. [21] G.J. McLachlan, T. Krishnan, and W. InterScience. The EM algorithm and exten-sions. Wiley New York, 1997. [22] X.L. Meng and D.B. Rubin. On the global and componentwise rates of convergence of the EM algorithm. Linear algebra and its applications, 199:413–425, 1994. [23] T. Mitsumori, S. Fation, M. Murata, K. Doi, and H. Doi. Gene/protein name recognition based on support vector machine using dictionary as features. BMC bioinfor-matics, 6(1):S8, 2005. [24] J. Natarajan, D. Berrar, C.J. Hack, and W. Dubitzky. Knowledge discovery in biology and biotechnology texts: A review of techniques, evaluation strategies, and application. Critical Reviews in Biotechnol, 25(1-2):31–52, 2005. [25] S. Della Pietra, V. Della Pietra, J. Lafferty, R. Technol, and S. Brook. Inducing features of random fields. IEEE transactions on pattern analysis and machine intel-ligence, 19(4):380–393, 1997. [26] L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE assp magazine, 3(1):4–16, 1986. [27] L.R. Rabiner et al. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989. [28] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of HLT-NAACL, pages 213–220, 2003. [29] L. Smith, L. Tanabe, R. Ando, C.J. Kuo, I.F. Chung, C.N. Hsu, Y.S. Lin, R. Klinger, C. Friedrich, K. Ganchev, et al. Overview of biocreative II gene mention recognition. Genome Biology, 9(2):S2, 2008. [30] J.C. Spall. Introduction to stochastic search and optimization: estimation, simula-tion, and control. Wiley-Interscience, 2005. [31] C. Sutton and A. McCallum. An introduction to conditional random fields for relational learning. Introduction to statistical relational learning, page 93, 2007. [32] Y. Tsuruoka, Y. Tateishi, J. Kim, T. Ohta, J. McNaught, S. Ananiadou, and J. Tsujii. Developing a robust part-of-speech tagger for biomedical text. Lecture notes in computer science, 3746:382, 2005. [33] H.M. Wallach. Conditional random fields: An introduction. Rapport technique MS-CIS-04-21, Department of Computer and Information Science, University of Penn-sylvania, 50, 2004. [34] B. Widrow and M.E Hoff. Adaptive switching circuits. 1960 IRE WESCON Convention Record. New York: IRE, 4:96–104, 1960. [35] J. Wilbur, L. Smith, and L. Tanabe. Biocreative 2. gene mention task. In Proceedings of the Second BioCreative Challenge Evaluation Workshop, pages 7–16, 2007. [36] A. Yeh, A. Morgan, M. Colosimo, and L. Hirschman. Biocreative task 1a: gene mention finding evaluation. BMC Bioinformatics, 6(1):S2, 2005. [37] X. Zhu. Semi-supervised learning literature survey. Technical report, University of Wisconsin-Madison, 2005.
|