跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉修維
研究生(外文):Hsiu-Wei Liu
論文名稱:設計具嵌入式濾波器之超寬頻放大器
論文名稱(外文):Design of Ultra-Wide-Band Amplifier Embedded with Filter
指導教授:徐敬文
指導教授(外文):Ching-Wen Hsue
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:74
中文關鍵詞:超寬頻放大器離散時域
外文關鍵詞:ultra-wideband amplifierdiscrete-time domain
相關次數:
  • 被引用被引用:1
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們利用離散時域的技術設計微波放大器,將其電晶體之散射參數以Z多項式表示,並結合微帶線之Z-時域模型,以串接或並接多條單位電氣長度傳輸線的電晶體來合成嵌入濾波器之微波寬頻放大器。
在設計之初,我們會選擇滿足規格的理想放大器增益響應作為設計原型,並根據該理想增益響應的特性來合成適當的傳輸線並、串接元件,最後我們利用最佳化的演算法找出放大器電路與理想增益響應之間的最佳近似解,進而得到一組放大器電路中傳輸線元件的特性阻抗。
論文最後將利用此一方法實現嵌入濾波器之超寬頻放大器,將電晶體合成串聯傳輸線、單段式開路殘枝、單段式短路殘枝及兩段式開路殘枝來達到其所需規格的放大器增益響應,並將量測數據與理論值加以比對。
In this thesis, we propose a novel method to design microewave amplifiers by using discrete-time techniques. The frequency-domain scattering parameters of transistors are converted into the z-domain representations. To implement microwave broadband amplifiers, we form the networks by cascading serial and shunt transmission-line sections of unit electrical length on the both sides of transistors.
The design begins with the adoption of a ideal gain response. we can determine the pattern of the matching networks based on the requirements of ideal gain response.A least square scheme is used to obtain characteristic impedances of transmission line elements that form the amplifier having the gain response as close as to the target response.
Eventually, we implement an ultra-wideband amplifier embedded with filters by using serial lines, open-circuited single-section stubs, short-circuited single-section stubs, and open-circuited two-section stubs. Experimental results are presented to illustrate the validity of this design method.
摘 要 I
Abstract II
誌 謝 III
Contents V
List of Figures VII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey on Wideband Amplifiers 2
1.3 Proposal 4
1.4 Organization of Chapters 5
Chapter 2 Basic Theory 6
2.1 Discrete-Time Filter 6
2.2 Bilinear Transformation 8
2.3 Microstrip Line 10
2.4 Ultra-Wideband Overview 13
Chapter 3 Equal-Length Transmission Lines in Z Domain 16
3.1 Chain-Scattering Parameters 17
3.2 Fundamental Circuits and Their Chain-Scattering Parameters 19
3.2.1 A Serial Transmission-Line Section 20
3.2.2 An Open-Circuited Single-Section Stub 23
3.2.3 A Short-Circuited Single-Section Stub 25
3.2.4 An Open-Circuited Two-Section Stub 27
3.3 Cascaded Network of Equal-Length Transmission Lines 30
Chapter 4 Design Method of Microwave Amplifiers Embedded with Filters 31
4.1 Feedback Amplifiers 31
4.2 Establish the Z-model of GaAs FET FSX017LG 35
4.3 Design of Amplifiers by the Synthesis Alogorithm 41

Chapter 5 Implementation and Experimental Results 45
5.1 The UWB Microwave Amplifier 46
5.2 Transistor Measurement 57
5.3 Experiment Results of UWB Microwave Amplifier 61
Chapter 6 Conclusion 66
6.1 Conclusion 66
6.2 Future Work 67
References 68
[1] D. M. Pozar, Microwave Engineering. New York: Wiley, 1998.
[2] H. Harada and R. Prasad, Simulation and software radio for mobile communications. Norwood, MA: Artech House, 2002.
[3] P. I. Richard, “Resistor-Transmission Line Circuits,” Proc. IRE, vol. 36, pp. 217–220, 1984.
[4] K. Kuroda, “General Properties and Synthesis of Transmission-Line Networks, Microwave Filters and Circuits,” A. Matsumoto, Ed. New York: Academic,
vol. 22, 1970.
[5] D.-C. Chang, C.-W Hsue, “Wide-Band Equal-Ripple Filters in Nonuniform Transmission Lines,” IEEE Trans. Microwave Theory Tech., vol. 49, 2001.
[6] D.-C. Chang, C.-W. Hsue, “Design and implementation of filters using transfer function in the Z domain,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 979-985, 2001.
[7] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Discrete-Time Signal Processing,” 2ndEd.,Prentice Hall, Inc, 1999.
[8] de Prony, R. Essai experimentale et analytique. J. Ecole Polvtechnique (Paris), pp.24-76, 1975.
[9] I. J Bahl and D. k. Trivedi, “A Designer`s Guide to Microstrip Line,” Microwave, 1977.
[10] “uwb forum”, http://www.uwbforum.org.
[11] R. Harjani, J. Harvey, and R. Sainati, “Analog/RF physical layer issues for UWB
systems”, VLSI Design, Proceedings. 17th International Conference,pp.941-948, 2004.
[12] D. Porcino, W. Hirt, “Ultra-Wideband Radio Technology: Potential and
Challenges Ahead,” IEEE Communications Magazine, vol.41, Issue 7, pp.66-74,
July 2003.
[13] G. Roberto Aiello and Gerald D. Rogerson, “Ultra-Wideband Wireless Systems,” IEEE Microwave Magazine, vol.4, Issue 2, pp.36-47, June 2003
[14] M. Ghavami, L. B. Michael, R. Kohno. “Ultra Wideband Signals and Systems in Communication Engineering,” John Wiley & Sons, Ltd
[15] K. C. Gupta, R. Garg, and I. J. Bahl, “Microstrip Lines and Slotilines,” Artech House, Dedham, Mass.
[16] C.-W. Hsue, C.-W. Ling, and W.-T. Hung, “Discrete-time notch filter and its application to microwave filter,” Microwave and Optical Tech. Lett., Vl. 50, vol. 6, pp. 1596-1600, 2008.

[17] I. J Bahl and D. k. Trivedi, “A Designer`s Guide to Microstrip Line,” Microwave, 1977.
[18] Dickinson, B.W., Kailath, T., and Morf, M., “Canonical Matrix Fraction and State Space Descriptions for Deterministic and Stochastic Linear Systems,” IEEE Trans. Automatic Control, AC-19, pp. 656-667, 1974.
[19] Fujitsu microelectronics, LTD. The data sheet of FSX017LG, Edition 1.2 July 1999.
[20] G. Gonzalez, Microwave Transistor Amplifier-Analysis and Design, 2nd Ed., Prentice Hall, Inc., 1984
[21] E.C. Levi, ”Complex-curve Fitting,” IRE Trans. Automatic Control, vol.AC-4, pp.37-44, 1959.
[22] Alan V. Oppenheim, Ronald W. Schafer and John R.Buck, Discrete-time Signal Processing. chapter six, second edition. Englewood Cliffs, NJ: Prentice Hall, 1999.
[23] K. Nagatomo, Y. Daido, M. Shimizu, and N. Okubo, ”GaAs MESFET Characterization Using Least Squares Approximation by Rational Functions’ IEEE Trans. Microwave Theory Tech. , vol. 41, no.2 pp.199-205, February 1993.

[24] R. Pantoja, , et al., “Improved Calibration and Measurement of the Scattering Parameters of Microwave Integrated Circuits,” IEEE Trans. Microwave Theory Tech., Vol. 37, no. 11, pp. 1675-1680, 1989.
[25] “In-Fixture Measurements Using Vector Network Analyzers,” Application Note 1287-9, Agilent Incorporation.
[26] “De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer,” Application Note 1364-1, Agilent Incorporation.
[27] “Applying the 8510 TRL Calibration for Non-Coaxial Measurements,” Product Note 8510-8A, Agilent Incorporation.
[28] “In-fixture Microstrip Device Measurements Using TRL* Calibration,” Product Note 8720-2, Agilent Incorporation.
[29] L.-C. Tsai, C.-W. Hsue, “Dual-Band Bandpass Filters Using Equal-Length Coupled-Serial-Shunted Lines and Z-Transform Technique,” IEEE Trans. Microwave Theory Tech., vol. 52, 2004.
[30] D. Hanselman and B. Littlefield, Mastering MATLAB 5. Englewood Cliffs, NJ: Prentice Hall, 1998.
[31] M. L. Edwards, J. H.Sinsky, “A new criterion for Linear 2-Port Stability Using a Single Geometrically Derived Parameter”, December 1992, IEEE Trans. Microwave Theory Tech., vol. 40, no. 12, pp. 2303-2311.
[32] M. P. Van der Heijden, L. C. N. De Vreede, and J. N. Burghartz “On the design of unilateral dual-loop feedback low-noise amplifiers with simultaneous noise, impedance, and IIP3 match,” IEEE J. Solid-State Circuits, vol.39, pp. 1727-1736, Oct. 2004.
[33] T. Chang, J. Chen, L. A. Rigge, and J. Lin, “ESD-Protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 8, pp. 1817–1826, Aug. 2008.
[34] Mingqi Chen, Jenshan Lin, “A 0.1–20 GHz Low-Power Self-Biased Resistive-Feedback LNA in 90 nm Digital CMOS,” IEEE Microwave Wireless Comp. Lett., Vol. 19, no. 5, pp. 323-325, May 2009.
[35] Chao Fang, Choi L. Law, and James Hwang, “A 3.1–10.6 GHz Ultra-Wideband Low Noise Amplifier With 13-dB Gain, 3.4-dB Noise Figure, and Consumes Only 12.9 mW of DC Power,” IEEE Microwave Wireless Comp. Lett., Vol. 17, no. 4, pp. 295-297, April 2007.
[36] B. Y. Banyamin, and M. Berwick, “Analysis of the performance of four cascaded single-stage distributed amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2657-2663, December 2000.

[37] B. Virdee, V. Virdee and B. Banyamin, “Bandwidth and efficiency Improvements in Cascade Single-Stage Distributed Amplifier,” in Eur. Microwave Conference, September 2002.
[38] M. Gillick, I. D. Robertson, and J. S. Joshi, “Coplanar waveguide two-stage balanced MMIC amplifier using impedance-transforming lumped-distributed branchline couplers,” Proc. Inst. Elect. Eng., vol. 141, pp. 241–245, Aug. 1994.
[39] S. Seo, D. Pavlidis, and J.-S. Moon, “A wideband balanced AlGaN/GaN HEMT MMIC low noise amplifier for transceiver front-ends,” in Eur. Gallium Arsenide Compound Semicond. Appl. (EGAAS) Symp. Dig., 2005, pp. 225–228.
[40] S. Piotrowicz, R. Aubry, E. Chartier, O. Jardel, J. C. Jacquet, E. Morvan, “Broadband Hybrid Flip-Chip 6-18 GHz AlGaN/GaN HEMT Amplifiers,” in IEEE MTT Int. Symp. Dig., pp. 1131-1134, June 2008.
[41] Chan-Sei Yoo, Gyeong-Sun Seol, Je-Hyun Youn, Gwang-Hoon Lee, Dongsu Kim, Sung-Won Kim, Kwang-Seok Seo, and Woo-Sung Lee, “A Ultrawideband Low Noise Amplifier using metamorphic HEMT on Organic Substrate,” in Asia-Pacific Microwave Conference Proceedings, pp. 1-4, December 2008.


[42] C.-H. Tseng and C.-L. Chang, “Improvement of Return Loss Bandwidth of Balanced Amplifier Using Metamaterial-Based Quadrature Power Splitters,” IEEE Microwave Wireless Comp. Lett., vol. 18, no. 4, pp. 269–271, April 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top