跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊運乾
研究生(外文):Yun-chien Yang
論文名稱:以最佳發射相位法進行超音波對比劑偵測之波形二元化可行性研究
論文名稱(外文):Ultrasonic contrast agent detection with optimal transmit phasing: A feasibility study with binary waveform
指導教授:沈哲州
指導教授(外文):Che-Chou Shen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:諧波影像諧波溢漏組織諧波二元碼Sigma-Delta法編碼微調最佳發射像位法相位誤差
外文關鍵詞:Harmonic imagingHarmonic leakageTissue harmonicBinary codeSigma-DeltaCode tuningOptimal transmit phasingPhase aberration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
超音波諧波影像常用以提升微氣泡對比劑的偵測能力,但其效果常限於組織諧波與諧波溢漏;故在先期研究中曾提出最佳發射相位法利用組織諧波與溢漏諧波之間的相位關係來抑制背景組織區域的諧波信號,以提高影像的CTR值。本研究嘗試將最佳發射相位法之任意連續波形以臨床儀器可使用之二元碼實現,並透過仿體及生物實驗以探討此技術之實用性。我們將透過Sigma-Delta及編碼微調兩步驟,把任意連續波形調整為二元碼,並分別使用單一探頭及陣列探頭發射編碼後波形以驗證是否仍可產生組織諧波抑制之效果。實驗結果顯示二元化之波形仍可產生相當之組織抑制效果,但因其溢漏諧波成分之相角及強度均隨發射相位呈現不規則變化而使得組織抑制效果並不如原連續波形之規律,故臨床應用時必須特別依賴事前校正來選擇最佳發射相位而影響其實用性。此外由於生物組織的複雜性將造成信號傳遞時的相位誤差,使抑制相位判斷上較為困難,也影響到CTR值改善的效果。
Ultrasonic harmonic imaging is routinely used to improve detection of contrast agent microbubbles. However, harmonic contrast detection is limited by tissue harmonics and leakage harmonics. We have previously proposed the method of optimal transmit phasing to increase CTR by relatively phasing the two harmonic components in the tissue background to cancel each other. Since most clinical systems can only transmit binary waveforms, the binary transformation of continuous transmit signal using the Sigma-Delta method is studied for optimal transmit phasing. Our results indicate that, though tissue suppression is still achievable with binary transmit waveforms, the extent of tissue suppression becomes uncertain with transmit phasing. Consequently, the pre-calibration becomes very critical to determine the optimal transmit phase. It may clinically limit the practicability of optimal transmit phasing. Furthermore, since the complexity of tissue will cause the phase aberration in transmission, the achievable tissue suppression may degrade and thus limiting the increase of CTR.
致謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XI

第一章 緒論

1-1 醫用超音波系統介紹
1-2 醫用超音波影像的基本原理與特性
1-3 超音波諧波影像的簡介
1-3-1 組織諧波影像的成像原理
1-3-2 對比劑諧波影像的成像原理
1-3-1 諧波溢漏之產生及影響
1-4 組織諧波與諧波抑制的相關文獻
1-5 研究動機與目標
1-6 論文架構

第二章 研究原理

2-1 最佳發射相位法說明
2-2 任意波形之二元編碼
2-2-1 編碼方式說明
2-2-2 探頭頻率響應之量測與計算

第三章 研究方法

3-1 模擬方法
3-2 實驗方法與系統架構
3-2-1 諧波信號的量測
3-2-2 仿體影像的組成
3-2-3 生物實驗的量測
3-2-4驗證非均勻組織實驗的量測

第四章 模擬與實驗結果

4-1 編碼前後之影響與結果
4-1-1 發射波形編碼後之比較
4-1-2單一探頭實驗結果
4-1-3陣列探頭實驗結果
4-1-3-1仿體影像及抑制相位判斷
4-1-3-2對比劑影像
4-2 非均勻組織造成之相位誤差
4-2-1非均勻組織驗證
4-2-2於非均勻組織上之實驗結果
4-2-2-1不同相位差造成之影響
4-2-2-2生物實驗影像

第五章 討論、結論與未來工作

5-1 討論與結論
5-2 未來工作

參考文獻
[1]P. J. A. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate and N. De Jong, “Ultrasound contrast imaging: current and new potential methods,” Ultrasound Med. Biol., vol. 26, no. 6, pp. 965-975, 2000.

[2]G. Bhagavatheeshwaran, W. T. Shi, F. Forsberg and P. M. Shankar, “Subharmonic signal generation from contrast agents in simulated neovessels,” Ultrasound in Med. & Biol., Vol. 30, No. 2, pp. 199–203, 2004

[3]F.Forsberg,PHD, “Ultrasound imaging of angiogenesis,” Bioengineering Conference,2002.Proceedings of the IEEE 28th Annual Northeast,20-21 April 2002 pp.291-292


[4]C. A. Cain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis,” J. Acoust. Soc. Amer., vol. 80, no. 1, pp. 28-32, July 1986.

[5]R. T. Beyer and S. V. Letcher, Nonlinear acoustics. New York: Academic, 1969, pp. 202-230.

[6]M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media,” J. Acoust. Soc. Amer., vol. 73, no. 3, pp. 774-779, March 1983.

[7]F. Tranquart, N. Grenier, V. Eder and L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging,” Ultrasound in Med. & Biol., Vol.25, No. 6, pp. 889–894, 1999.

[8]T.Christopher, “Experimental investigation of finit amplitude distortion-based, second harmonic pulse echo ultrasound imaging,” IEEE Trans. Ultrasound.,Ferroelec., Freq. Control., vol. 45,pp.158-162, 1998.

[9]T. Schmidt ,C. Hohl ,P. Haage ,M. Blaum ,D. Honnef ,C. Weiß ,G. Staatz ,R. W. Günther, “Diagnostic Accuracy of Phase-Inversion Tissue Harmonic Imaging Versus Fundamental B-Mode Sonography in the Evaluation of Focal Lesions of the Kidney,” AJR 2003;180:1639–1647

[10]P. H. Chang, K. K. Shung, S. J. Wu et al., “Second harmonic imaging and harmonic Doppler measurements with Albunex��,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, no. 6, pp. 1020–1027, Nov. 1995.

[11]N. de Jong, “Improvements in ultrasound contrast agents,” IEEE Eng. Med. Biol., vol. 15, no. 6, pp. 72–82, 1996.

[12]W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles,” Ultrasound Med. Biol., Vol.26, No. 1, pp. 93–104, 2000.

[13]K. Chetty, E. Stride, C. A. Sennoga, J. V. Hajnal, and R. J. Eckersley, “High-Speed Optical Observations and Simulation Results of SonoVue Microbubbles at Low-Pressure Insonation,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 6, june ,pp.1333-1342 ,2008

[14]王裕鈞,「使用三倍頻發射相位法於組織諧波信號分析」,國立台灣科技大學碩士論文,民國九十六年。

[15]D. Hope Simpson and P. N. Burns, “Perfusion imaging with pulse inversion Doppler and microbubble contrast agents: In vivo studies of the myocardium,”in Proc. IEEE Ultrason. Symp., pp. 1783-1786, 1998.

[16]F. Tranquart, N. Grenier, V. Eder, and L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging,” Ultrasound Med. Biol., vol. 25, no. 6, pp. 889-894, 1999.

[17]T. Christopher, ”Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging,” IEEE Trans. Ultrason., Ferrroelec., Freq. Control., vol. 44 ,pp. 125–139, 1997.

[18]N. de Jong, “Improvements in ultrasound contrast agents,” IEEE Eng. Med. Biol., vol. 15, pp. 72-82, 1996.

[19]W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles, ” Ultrasound Med. Biol., vol. 26, no. 1, pp. 93-104, 2000.

[20]D. E. Goertz, A. Needles, R. Karshafian, A. S. Brown, P. N. Burns, and F. Stuart Foster, “High frequency nonlinear B-scan imaging of microbubble contrast agents,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 52, no. 1, pp. 65–78, Jan. 2005.

[21]F. Forsberg *, W.T. Shi, B.B. Goldberg, “Subharmonic imaging of contrast agents,” Ultrasonics 38 pp. 93–98,2000

[22]G.Yanjun, Z. Dong and G. Xiufen, “Subharmonic and ultraharmonic emissions based on the nonlinear oscillation of encapsulated microbubbles in ultrasound contrast agents,” Chinese Science Bulletin Vol. 50 No. 18 pp.1975—1978 ,2005

[23]C. C. Shen and P. C. Li, “Harmonic leakage and image quality degradation in tissue harmonic imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, no. 3, pp. 728–736, May 2001.

[24]T. Christopher, “Source prebiasing for improved second harmonic bubble-response imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 3, pp. 556-563, 1999.

[25]S. Krishnan, J. D. Hamilton and M. O’Donnell, “Suppression of propagating second harmonic in ultrasound contrast imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp.704-711, 1998.

[26]S. Krishnan and M. O’Donnell , “Transmit aperture processing for non-linear contrast agent imaging,” Ultrason Imaging, vol. 18, pp. 77-105, 1996.

[27]王鴻偉,「使用三倍頻發射相位法於對比劑諧波影像」,國立台灣科技大學碩士論文,民國九十七年。

[28]P. J. Phillips, “Contrast pulse sequences (CPS): imaging nonlinear microbubbles,” in Proc. IEEE Ultrason. Symp., vol. 2, pp. 1739-1745, 2001.

[29]C. C. Shen and P. C. Li, “Pulse-inversion-based fundamental imaging for contrast detection,” IEEE Trans. Ultrason. Ferroelect., Freq. Contr., vol. 50, pp.1124-1133, 2003.

[30]O. Couture, J.F. Aubry, G. Montaldo, M. Tanter, M. Fink, “Tissue harmonics cancellation using time-reversal,” IEEE International Ultrasonics Symposium Proceedings.,pp.1104-1107,2008

[31]謝依峻,「組織背景抑制於諧波對比劑偵測」,國立台灣科技大學碩士論文,民國九十七年。

[32]Sheng-Wen Huang, Pai-Chi Li, “Arbitrary Waveform Coded Excitation Using Bipolar Square Wave Pulsers in Medical Ultrasound”, IEEE Trans. Ultrason., Ferrroelect., Freq. Control., vol. 53 no.1 , pp.106-116, Jan. 2006.

[33]Yadong Li and J. A. Zagzebski, “A Frequency Domain Model for Generating B-Mode Images with Array Transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 3, pp. 690-698, May. 1999.

[34]S. M. van der Meer, M. Versluis, D. Lohse, C. T. Chin, A. Bouakaz and N. de Jong, “The resonance frequency of SonoVue™ :As observed by high-speed optical imaging,” in Proc. IEEE Ultrason. Symp., vol. 1, pp.343-345, 2004.

[35]P. C. Li, C. C. Shen and S. W. Huang, “Waveform design for ultrasonic pulse-inversion fundamental imaging, ” Ultrason Imaging, vol. 29, pp. 73-86, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top